Гамма лазер оптического диапазона и ядерный стандарт частоты на базе изомерного перехода малой энергии в ²²⁹Th

Е.В.Ткаля (НИИЯФ МГУ)

МИФИ, ЛаПлаз-2017, 24 января 2017

Часть 1

Свойства низколежащего изомерного уровня в ядре Th-229.

Энергия изомерного состояния.

История открытия

Метод: анализ энергий и интенсивностей γ -переходов в 229 Th после α -распада 233 U Idaho National Engineering Laboratory

1976 $E_{is} < 100 \text{ eV } L.A.$ Kroger and C.V. Reich. Nucl. Phys. A259, 29 (1976)

1990 $E_{is} < 5 \text{ eV}$ C.V. Reich and R.G. Helmer. Phys. Rev. Lett. 64, 271 (1990)

1994 $E_{is} = 3.5 \pm 1.0 \text{ eV}$ R.G. Helmer and C.V. Reich. Phys. Rev. C 49, 1845 (1994)

[resolution ~ 17 eV/channel]

Lawrence Livermore National Laboratory and Los Alamos National Laboratory

2007 $E_{is} = 7.8 \pm 0.5 \text{ eV } B.R. Beck et al. Phys. Rev. Lett. 98, 142501 (2007)$

[energy resolution ~ 26 eV (FWHM)]

+ еще около 10-15 экспериментальных работ, в которых впоследствии были выявлены грубые ошибки.

Метод: детектирование электронов конверсии

Germany: Ludwig-Maximilians-Universitat Munchen, GSI Darmstadt, Helmholtz-Institut Mainz, Johannes Gutenberg-Universitat Mainz

2016 6.3 $< E_{is} <$ 18.3 eV *L. von der Wense et al.* Nature 533, 47 (2016)

Метод: ядерные реакции (измерение спектра t в реакции 230 Th $(d,t)^{229}$ Th при E_d = 17 MeV)

Canada, McMaster UniversityTandem Accelerator [resolution ~ 6-7 keV in 1990]

1990 $E_{is} < 6 \text{ keV } D.G.$ Burke et al. Phys. Rev. C 42, R499 (1990).

2008 $E_{is} \sim 0.1 \text{ keV } D.G.$ Burke et al. Nucl. Phys. A 809, 129 (2008).

Энергия изомерного состояния. История открытия

 $T_{1/2}$ of the isomeric level depends on the chemical environment

Энергия изомерного состояния

 $E_{is} = 7.6 + / -0.5 eV$

Phys.Rev.Lett. 98, 142501 (2007)

B.R.Beck, J.A.Becker, P.Beiersdorfer et al. Lawrence Livermore National Laboratory, Los Alamos National Laboratory,

NASA Goddard Space Flight Center

Источник: U-233 (105 µСі)

Детектор: NASA/electron beam ion trap x-ray

microcalorimeter spectrometer Разрешение: 26 eV (FWHM).

Е.В.Ткаля. Свойства оптического перехода в ядре ²²⁹Th. УФН **73** (2003) 323

В.Ф.Стрижов, Е.В.Ткаля. *Каналы распада низколежащего изомерного состояния ядра Тh-229*. ЖЭТФ **99** (1991) 697.

$$T_{1/2} \approx 10^{-6} \text{ s}$$
 $\alpha \approx 2 \times 10^{9}$

Е.В.Ткаля. Безрадиационный распад низколежащего ядерного изомера 229Th(3.5 эВ) в металле. Письма в ЖЭТФ **70** (1999) 367.

Металл: конверсия на электронах проводимости (неупругое рассеяние электронов проводимости на ядрах). Энергетический порог у реакции ^{229m}Th(*e*,*e*')²²⁹Th отсутствует.

Время жизни изомера в "стандартном" металле < 1 с

$$\begin{split} \frac{1}{T} \approx n_e \ \sigma_e \ \upsilon_F & \qquad n_e \approx 6 \times 10^{22} \ \ \text{cm}^{-3} \\ \upsilon_F &= \sqrt{2 E_F \, / \, m_e} \approx 4.6 \times 10^{-3} \\ \sigma_{M1} \approx 10^{-30} \div 10^{-31} \ \ \text{cm}^2 \end{split}$$

"Ядерный свет"

Е.В.Ткаля. Вероятность спонтанного излучения для M1 перехода в диэлектрической среде: распад ^{229m}Th(3/2+, 3.5±1.0 эВ) . Письма в ЖЭТФ **71** (2000) 449.

E.V.Tkalya et al. *Decay of the low-energy nuclear isomer* 229mTh(3/2+, 3.5+/-1.0 eV) in solids (dielectrics and metals): A new scheme of experimental research. Phys.Rev.C **61** (2000) 064308.

Время жизни уровня при E_{is} = 7.8 eV: 10-25 мин. в зависимости от n LiCAF

А.М.Дыхне, Е.В.Ткаля. *Матричный* элемент перехода аномально низкой энергии 3.5±0.5 эВ в ядре 229Th и время жизни изомера. Письма в ЖЭТФ **67** (1998) 233.

 $B(M1)_{Wu}$ = 4.8 ×10⁻² с учетом кориолисова взаимодействия

Зависимость вероятности спонтанного М1 γ распада от показателя преломления среды "n":

$$W_{\text{medium}} = n^3 W_{\text{vacuum}}$$

α- Распад состояния 3/2+(7.6+/-0.5 эВ)

Е.В.Ткаля и др. *Альфа-распад первого* возбужденного уровня ядра Th-229. Письма в ЖЭТФ **64** (1996) 319; *Альфа-спектр* распада ^{229m}Th (3/2+, 3.5 эВ). Известия РАН, серия физическая, **61** (1997) 58.

α-Спектр при распаде состояния 3/2+(7.6 эВ) отличается от спектра основного состояния ядра Th-229. Будут заселяться преимущественно уровни ротационной полосы 3/2+[631] ядра Ra-225.

Вероятность α-распада состояния 3/2+(7.6 эВ) в 3-4 раза больше вероятности распада основного состояния Th-229.

Часть 2

Лазер на ядерном переходе оптического диапазона

Две основные проблемы

L.A. Rivlin.

Nuclear gamma-ray laser: the evolution of the idea. Quantum Electronics 37 (8) 723-744 (2007)

...the key conflict inherent in any conception of the NGL is the antagonism between the necessity to accumulate a sufecient amount of excited nuclei and the requirement to narrow down the emission gamma-ray line to its natural radiative width...

"Never say never"

...Thus, however, will a nuclear gamma-ray laser or any other device emitting stimulated nuclear gamma-ray radiation be created one day (and when)?..

"...We can overcome now the basic difficulties and develop a unique γ -ray laser working on the magnetic dipole transition in the VUV range between the first excited level $3/2^+(7.6 \text{ eV})$ and the ground state $5/2^+(0.0)$ of the 229 Th nucleus..."

Давайте вспомним, что первые ЛАЗЕРы работали в микроволновом диапазоне и назывались МАЗЕРами

Условия получения когерентного γ-излучения оптического диапазона на ядерном переходе с энергией 7.8 eV в системе изомеров ^{229m}Th.

Усиление γ -излучения изомерами 229m Th является результатом:

- 1) возбуждения изомеров ^{229m}Th в диэлектрике с большой шириной запрещенной зоны лазерным излучением;
- 2) создания инверсной заселенности ядерных уровней в охлажденном образце вследствие взаимодействия ядер с внутренним электрическим полем кристалла;
- 3) спиновой релаксации (установления Больцмановского распределения заселенности) вследствие взаимодействия ядер с электронами проводимости в металлическом покрытии.
- 4) испускания и поглощения оптических фотонов ядрами Th-229 в кристалле без отдачи (эффект Мессбауэра в оптическом диапазоне).

Вариант простейшего ядерного лазера на ²²⁹Th

Идея использовать кристалл с большой шириной запрещенной зоны родилась в 2000 г.

E.V. Tkalya.

Spontaneous Emission Probability for M1 Transition in a Dielectric Medium: $^{229m}Th(3/2+, 3.5 \pm 1.0 \text{ eV})$ Decay.

JETP Lett. **71** (2000) 311.

E.V. Tkalya, A.N. Zherikhin, and V.I. Zhudov. *Decay of the low-energy nuclear isomer* ^{229m} *Th*(3/2+, 3.5+/-1.0 eV) in solids (dielectrics and metals): A new scheme of experimental research.

Phys.Rev.C 61 (2000) 064308.

В диэлектрике с шириной запрещенной зоны $\Delta \approx 10$ эВ резонансные фотоны с энергией $\omega = 7.8$ эВ (т.е. фотоны, для которых выполняется соотношение $\omega < \Delta$) будут взаимодействовать **без отдачи непосредственно с ядрами** ²²⁹**Th** в основном |5/2+,0.0 > и изомерном |3/2+,7.8 eV> состояниях минуя взаимодействие с электронной оболочкой.

S. Kuck et al. *Laser Phys.* **11** (2001) 116.

Dielectric

LiCaAlF₆: Симметрия: Trigonal

Ширина зоны: 110 nm (**11.1 eV**)

Температура плавления: 825°C

Эффект Мёссбауэра в оптическом диапазоне

Энергия отдачи E_R пренебрежимо мала:

$$E_R = \omega^2 / 2M = 1.5 \times 10^{-10} \text{ eV}$$

(M- масса ядра Th-229, $\omega=7.8~{\rm eV})$

Дебаевский фактор $f \approx \exp(-3E_R/2\theta_D) = 1$,

т.к. $E_R / \theta_D << 1$ в любом случае ($\theta_D -$ температура Дебая)

Излучение фотонов изомерами ^{229m}Th и поглощение резонансных фотонов ядрами ²²⁹Th в кристалле будет происходить без отдачи.

Возбуждение ^{229m}Th(7.8 эВ) лазерным излучением (широкий пучок)

$$dn_{is} / dt = \sigma \varphi n_{gr} - \Lambda_{is} n_{is} - g \sigma \varphi n_{is}$$

$$dn_{gr} / dt = -\sigma \varphi n_{gr} + \Lambda_{is} n_{is} + g \sigma \varphi n_{is}$$

Начальные условия

$$n_{is}(0) = 0$$

$$n_{gr}(0) = 10^{18}$$
 cm⁻³

$$\sigma = \frac{\lambda_{is}^2}{2\pi} \frac{\Gamma_{rad}}{\Delta \omega_L} \frac{1}{g} \approx 10^{-24} \text{ cm}^2$$

$$\Delta\omega_L/\omega_L=10^{-6}$$

$$\Lambda_{is} = \Gamma_{rad} = \ln 2 / T_{1/2}^{is}$$

$$\varphi \approx 10^{20}$$
 cm⁻² s⁻¹

Для достижения большой величины градиента электрического поля на ядре ²²⁹Th необходимо, чтобы:

- а) атомы тория замещали в кристаллической решетке атомы с валентностью от 1 до 3;
- б) *компенсирующие ионы* располагались в междоузлиях около иона Th⁴⁺.

²²⁹Th:LiCaAlF₆

Структура LiCAF – из работы

S. Kuze et al.

J. Solid State Chem. 177 (2004) 3505.

Положения дополнительных ионов фтора найдены в работе

R.A. Jackson et al.

J. Phys.: Condens. Matter 21 (2009) 325403.

Квадрупольное расщепление в LiCaAlF₆

The Electric Field Gradient (EFG)

"Wien2k": EFG на ионах Ca^{2+} в LiCAF равен $\varphi_{zz} = -1.2 \times 10^{17} \text{ V/cm}^2$

В кристалле 229 Th:LiCaAlF $_6$ основной вклад в EFG на ионах $^{4+}$ дают ионы $^{-}$, которые компенсируют «лишний» заряд $^{2+}$.

Ионы **F**⁻ располагаются в непосредственной близости от

Th⁴⁺. Оценка EFG на Th⁴⁺ для **точечного** иона такова:

$$\varphi_{zz} \approx -2 \times 10^{18} \text{ V/cm}^2$$
.

The Sternheimer antishielding factor $\gamma_{\infty} \approx -177.5$ F.D.Feiock and W.R.Johnson, Phys. Rev. 187, 39 (1969)

EFG =
$$(1 - \gamma_{\infty}) \varphi_{zz} \approx -3 \times 10^{20} \text{ V/cm}^2$$

Получение больцмановского распределения в заселении подуровней основного состояния ядра ²²⁹Th посредством выдержки кристалла ²²⁹Th:LiCaAlF₆ при низкой температуре.

Механизм релаксации – неупругое рассеяние электронов проводимости металлического покрытия на ядрах Th-229.

Диэлектрический кристалл допированный ядрами ²²⁹Th

Возбуждение значительного числа ядер на изомерный уровень *лазерным* излучением и создание инверсной заселенности в системе ядер ²²⁹Th.

Creation of inverse population in the Th-229 ground-state doublet by means of a narrowband laser

E.V.Tkalya, L.P.Yatsenko. Laser Phys. Lett. 10, 05808 (2013)

Кинематика процесса рассеяния

Энергия квадрупольного расщепления

$$\Delta E = 10^{-5} \text{ eV}$$

Энергия электронов проводимости

$$E_e = E_F \approx 5.5$$
 eV

Импульсы электронов

$$p_i = \sqrt{2m_e E_F}$$
 , $p_f = \sqrt{2m_e (E_F + \Delta E)}$

Свойства виртуального фотона

$$\omega_{\gamma} = \Delta E$$
, $q_{\gamma}^{\text{min}} = p_f - p_i = \Delta E \sqrt{m_e/2E_F}$, $\lambda_{\gamma} = 1/q_{\gamma}^{\text{min}} \approx 0.01$ cm

Фотон существует в течение $\Delta t \approx \hbar / m_{\gamma}^*$, где $m_{\gamma}^* = \sqrt{q_{\gamma}^2 - \omega_{\gamma}^2} \approx q_{\gamma}^{\rm min}$

Область распространения фотона

$$r_{\gamma} = c\Delta t \approx 1/m_{\gamma}^* \approx 10^{-2} \text{ cm}$$

Процесс релаксации ядерных спинов

Время "спин-решеточной" релаксации
$$T_1$$
 $\frac{1}{T_1} \approx n_e \frac{\Delta E}{E_F} \sigma_e \upsilon_F$

Плотность электронов проводимости (Au, Cu, Ag) $n_e \approx (6 \div 8) \times 10^{22}$ cm⁻³

$$\sigma_e(M1, \mu = 0.45\mu_N, \Delta E = 10^{-5} \ eV) \approx 10^{-31}$$
 cm⁻²

E. Tkalya, PRC 86 (2012) 054605.

$$\upsilon_F = \sqrt{2E_F / m_e} \approx 4.6 \times 10^{-3}$$

$$T_1 \leq 100$$
 d

E.Klein, Relaxation Phenomena. In: Low-Temperature Nuclear Orientation. Eds. N.J.Stone and H. Postma, (North-Holland, Amsterdam, 1986) p.579. ... In insulators without electronic moments... (i.e. in pure crystals)... at millikelvin temperatures... T_1 would exceed the age of the Universe...

Усиление гамма-излучения 7.8 эВ за счет стимулированного излучения ансамбля изомерных ядер ^{229m}Th.

Коэффициент усиления $\chi \approx 3$ cm⁻¹

$$\chi = \frac{\lambda_{is}^{2}}{2\pi} \frac{\Gamma_{rad}}{\Delta \omega_{tot}} \frac{1}{1+\alpha} \left(n_{is} - \frac{n_{gr}}{g} \right) - \kappa$$

$$n_{gr}(t=0) = 10^{18} \qquad n_{is} \approx 2 \times 10^{17} \text{ cm}^{-3}$$

$$\lambda_{is} = 2\pi / E_{is} = 163 \pm 11 \text{ nm}$$

$$\Gamma_{rad} = \ln 2 / T_{1/2}^{is} \approx 3 \times 10^{-19} \text{ eV}$$

$$\Delta \omega_{tot} \le 7 \times 10^{-13}$$
 eV
 $\kappa \approx 1 \quad (\kappa \to 0.01)$ cm⁻¹

 $T_{1/2}^{is} \approx 25 \text{ min}$ $\alpha = 0$

(the linear attenuation coefficient)

Простейший лазер, который будет сам генерировать импульсы.

 $\chi = 3 \text{ cm}^{-1}$, D = 0.1 mm, L = 5 cm, the gain $\exp(\chi L) \approx 10^6$

²²⁹Th:
$$m = 1 \mu g$$
 $n_{gr}(0) = 10^{18} \div 10^{19} \text{ cm}^{-3}$ $n_{is} = 2 \times 10^{17} \text{ cm}^{-3}$

Излучение будет иметь вид последовательности импульсов с частотой повторения

$$f_{rep} = Q_{is} (D/L)^2 \approx 10^4 \div 10^5 \text{ s}^{-1}$$
, where $Q_{is} = \frac{\ln 2}{T_{1/2}^{is}} N_{is} \approx 2 \times 10^{10} \text{ s}^{-1}$

Продолжительность излучения ү-лазера

$$\tau \approx T_{1/2}^{is} (L/D)^2 \exp(-\chi L) \approx 100 \text{ s}$$

Средняя мощность γ -лазера $P \approx 10^{-6} \div 10^{-7} \,\mathrm{W}$.

Какую выбрать схему?

Квадрупольное или зеемановское расщепление?

$$E_{m} = eQ_{gr(is)}(1 - \gamma_{\infty})\varphi_{zz} \frac{3m^{2} - J_{gr(is)}(J_{gr(is)} + 1)}{4J_{gr(is)}(2J_{gr(is)} - 1)}$$

Необходима экстремально низкая температура T = 0.01 K ($kT = 8.6 \times 10^{-7} \text{eV}$) при температуре T = 0.1 K

Эксперимент возможен

Перспективные кристаллы

W.G. Rellergert et al. *Phys.Rev.Lett.* **104**, 200802 (2010)

 Na_2ThF_6 — (?) Энергия электрического квадрупольного взаимодействия, вероятно, мала в кристалле Na_2ThF_6 , т.к. нет дополнительных (компенсирующих) отрицательных ионов в окрестности иона Th^{4+} .

 $LiCaAlF_6$ (LiCAF) $Ca^{2+} \rightarrow Th^{4+} + 2F^{-}$

 $LiSrAlF_6$ (LiSAF) $Sr^{2+} \rightarrow Th^{4+} + 2F^{-}$

 $LiYF_4$ (YLF) $Y^{3+} \rightarrow Th^{4+} + F^{-}$

 CaF_2 $Ca^{2+} \rightarrow Th^{4+} + 2F^{-}$

A. Ritucci et al. LLNL Preprint UCRL-JRNL-219656 (2006)

LiF - 13.6-14.5 eV, $BaF_2 - 9.1 eV$, $SiO_2 - 8.9 eV$

Часть 3

Ядерные часы

Europhys. Lett., **61** (2), pp. 181–186 (2003)

Nuclear laser spectroscopy of the 3.5 eV transition in Th-229

E. Peik(*) and Chr. Tamm Physikalisch-Technische Bundesanstalt - Bundesallee 100 38116 Braunschweig, Germany

PRL **102**, 233004 (2009)

PHYSICAL REVIEW LETTERS

week ending 12 JUNE 2009

Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman

¹School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

²Department of Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA (Received 19 February 2009; published 12 June 2009)

We have produced laser-cooled crystals of ²³²Th³⁺ in a linear rf Paul trap. This is the first time that a multiply charged ion has been laser cooled. Our work opens an avenue for excitation of the nuclear transition in a trapped, cold ²²⁹Th³⁺ ion. Laser excitation of nuclear states would establish a new bridge between atomic and nuclear physics, with the promise of new levels of metrological precision.

Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, ^{1,*} A. G. Radnaev, ¹ A. Kuzmich, ¹ V. A. Dzuba, ² V. V. Flambaum, ² and A. Derevianko ³

¹School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

²School of Physics, University of New South Wales, Sydney 2052, Australia

³Department of Physics, University of Nevada, Reno, Nevada 89557, USA

(Received 7 October 2011; published 22 March 2012)

The 7.6(5) eV nuclear magnetic-dipole transition in a single $^{229}\text{Th}^{3+}$ ion may provide the foundation for an optical clock of superb accuracy. A virtual clock transition composed of stretched states within the $5F_{5/2}$ electronic ground level of both nuclear ground and isomeric manifolds is proposed. It is shown to offer unprecedented systematic shift suppression, allowing for clock performance with a total fractional inaccuracy approaching 1×10^{-19} .

Partial energy-level diagram of the $5F_{5/2}$ electronic ground levels within the nuclear ground and isomer manifold of $^{229}\mathrm{Th}^{3+}$

Обратный электронный мостик

В атоме Th

E.V. Tkalya, JETP Lett. **55**, 211 (1992), Sov. J. Nucl. Phys **55**, 1611 (1992), Phys. Scr. **53**, 296 (1996)

B ионе Th⁺

S. G. Porsev et al. Phys. Rev. Lett. 105, 182501 (2010)

