

34th European Conference on Laser Interaction with Matter Moscow, Russia, September 18-23, 2016.

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВНИИЭФ

«EXPERIMENTS ON HYDROGEN ISOTOPES FREEZING ON THE SPHERICAL CAPSULE»

Authors:

V.M. Izgorodin E.Y. Solomatina <u>E.I. Osetrov</u> M.A. Rogozhina A.P. Pepelyaev

Introduction

The conducting of experiments on laser thermonuclear fusion assumes the use of the cryogenic target .

The cryogenic target - a hollow spherical capsule with smooth uniform by a layer of isotopes of hydrogen, freezing on its inner surface.

	polystyrene microsphere		
	layer of solid fuel (D-T mixture)		
	vapor		
	Diameter boxing	0.6-1 cm	
	Diameter of the holes	~1-1.5 mm	
	Permissible roughness of the outer surface of the capsule:		
High-Z casing	- Ge alloy polymer capsule	10 nm	
	- Cu alloy capsule of Be	30 nm	
M ATTACK	The thickness of the DT ice	65÷100 µm	
122362 200	- permissible gage	<1%	
and the	- DT weight in the target	0,2-0,3 mg	
	Acceptable surface roughness of the inner DT-ice:	.1	
X-rays Eusion cansule	- capsule of Be	< i µili 2 µm	
Laser		•	

 D.N. Bittner, B.Kozioziemski, J.Pipes. Forming uniform deuterium hydride and deuterium-tritium layers in shells. ICF Quarterly Report 4, Lawrence Livermore National Laboratory, Livermore, CA UCRL–LR–105821-98-4 (1998-), p.131-139.;

The stand for targets research at low temperatures

Necessary temperature for carrying out experiments 10°K - 20°K.

Arrangement of the stand

1. Backing pump; 2. Turbomolecular pump; 3. Buffer volume of the pump; 4. Hydrogen isotopes cylinder; 5. Reducer P1; 6. Pressure gauge D1; 7. Helium cylinder; 8. Reducer P2; 9. Pressure gauge D2; 10. Pressure gauge D3; 11. Box with polystyrene capsule; 12. The cryostat; 13.1-13.7. Vacuum valve; 14. Fine control leak valve.

Temperature control is carried out by the controller

Experimental box

The experimental box represents a system of isolated gas volumes

Carrying out experiments on hydrogen isotopes inlet through a fill tube in spherical polystyrene capsule with the subsequent freezing.

Process of spherical polystyrene capsule filling with liquid phase hydrogen isotopes

The three-dimensional problem of D-T fuel cryogenic layer formation in the spherical container

The problem represents a complex of equations of heat conduction of five-layer medium together with an equation of gas dynamics and an equation of state for a gas phase in an inner part.

It is required to spot evolution in time of redistribution of temperature on radius and polar angle and location of a «vapor - solid» boundary .

Calculation of the form of the free surface of a fluid at various filling of the spherical container.

Calculation of the form of the free surface of a fluid at various filling of the container – initial conditions for the solution of a three-dimensional problem.

Contours of section of interfaces "liquid-gas" for three cases of filling of the shell (1 - VL/VC = 0.058; 2 - VL/VC = 0.2 and 3 - VL/VC = 0.6). VL and VC - volume of the condensed gas and the shell accordingly

Experiments on the freezing of deuterium in a spherical capsule

 $T_{triple point}(D_2)=18,7K;$

Parameters experimental assemblage:

- polystyrene capsule Ø1350 µm;
- wall thickness 8 μm;
- fill tube Ø28 µm.

Dynamics of protium cryogenic layer behavior at different temperature near triple point

$$T_{triple point}$$
 (H₂)=13,96K;

Parameters of the experimental assemblage:

- polystyrene capsule Ø1325 µm;
- wall thickness 8 μm;
- fill tube Ø56 µm.

Calculated condensed gas mass value $H_2=0,07mg$;

Beginning of condensation $T_A = 13,9K$, $T_B = 14,7K$

Beginning of crystallization $T_A = 13,8K, T_B = 14,6K$

Solid phase T_A =13,4K, T_B =14,2K

Hydrogen isotopes – fuel for capsule filling

Dynamic behavior of hydrogen-deuterium mixture generated metal hydride source at temperature fluctuations near triple point

 Triple point (HD)=16,6K

 Parameters of the experimental assemblage:

 - polystyrene capsule Ø1325 μm;

 - wall thickness 8 μm;

 - fill tube Ø56 μm.

1 - MH source, 2 – Heater, 3.1.-3.2 – Vacuum valve, 4 - Pressure gauge, 5 - Cross

The mixture: 25%H₂, 50%HD, 25%D₂

Beginning of condensation $T_A = 17,5K, T_B = 18,3K$

Solid phase T_A =15,7K, T_B =16,6K

Calculated condensed gas mass mixture value 0,025 mg;

3.3

Dynamic behavior of hydrogen-deuterium mixture (H₂, D₂) at temperature fluctuations near triple point

1 - Hydrogen (deuterium) cylinder, 2 – Reducer, 3 - Backing pump, 4 - Vacuum valve, 5 - Mixture (H₂,D₂) cylinder.

The mixture: 40%H₂, 31,4%HD, 28,6%D₂ (±0,1%)

 $T_A = 16,5 \text{ K}$ Beginning of condensation

T_A =14.6 K Beginning of crystallization

T_A=14.5 K Solid phase

 T_A =14.5 K Solid phase (focus on the front surface of the capsule)

The main results.

The technology of spherical polysterene capsules filling by hydrogen isotopes through a fill tube has been developed;

Experiments on liquefaction of protium, deuterium with the subsequent freezing are made;

Experiments on liquefaction of hydrogen-deuterium mixture (25%H₂, 50%HD, 25%D₂), generated MH source, with the subsequent freezing on internal surface of the capsule are made;

The technics of carrying out the experiment is worked through.

Experiments on liquefaction of hydrogen-deuterium mixture (H_2, D_2) with the subsequent freezing are made;