Simulation of double-shell targets for experiments near to a threshold of thermonuclear ignition on megajoule laser

V.A. Lykov, E.S. Andreev, L.I. Ardasheva, E.S. Bakurkina, N.G. Karlykhanov, M.Yu. Kozmanov, G.N. Rykovovanov, L.V. Sokolov, M.C. Timakova, V.E. Chernyakov and A.N. Shushlebin

34-th ECLIM
Moscow, September 20, 2016
SUMMARY

1. Advantages and disadvantages of double-shell target.
2. The ignition margin of double-shell targets at different time dependence of radiation temperature.
3. Effects of DT initial density on compression symmetry and thermonuclear burning parameters.
4. Simulations of double-shell targets taking into account spectral kinetic radiation transfer.
5. Simulation of the double-shell target with account of a turbulent mixing by the $k\varepsilon$-model.

CONCLUSION
Advantages and disadvantages of double-shell targets

ADVANTAGES:

- It is not required a careful tailoring of laser pulse
- The velocity of shell could be ~ 2 time lower
- The temperature of X-Ray radiation could be less 300 eV
- It is possible to use the 2ω radiation of Nd-laser

DISADVANTAGES:

- The yield of thermonuclear energy is lower
- The strong development of RT-instability and turbulent mixing at inner shell surfaces

The 1D-simulation of gas-filled double-shell target ("base" target)

The shells have low aspect ratio: $A_{Au} = 6$ and $A_{Be} = 4$ to reduce a turbulent mixing influence on the compression and burn of DT-fuel.

The radiation temperature of 275 eV with front duration of 1-10 ns

Double-shell target could has ignition margin in 2 time more then one-shell target, but it convergent ration also high.

Questions to the optimization of double-shell targets

- Choice of a material, position and thickness of shells, composition and quantity of impurity in ablator.
- Influence of time dependence of radiation temperature on compression and burning of a double-shell target.
- Possibility to use liquid DT-fuel instead of DT-gas in double-shell target.
- Influence of hohlraum radiation asymmetry and turbulent mixing on ignition of a double-shell target.
The objective function under optimization is the ignition margin W^*:

$$W^* = (n-1) \int_{-\infty}^{t^*} \frac{dE_f / dt}{E} dt$$ \hspace{1cm} (1)$$

where: dE_f / dt – rate of fuel heating by products of thermonuclear reactions, E - energy of DT-fuel, n - exponent in $\langle \sigma v \rangle \sim T^n$, t^* - time of compression maximum.

The ignition margin taking into account the energy losses by a heat conductivity into a shell:

$$W^*_Q = \frac{W^* \cdot E^*}{W^* + E^*}$$ \hspace{1cm} (2)$$

where: W^*- ignition margin obtained by formula (1), E^* - energy of DT-fuel, Q^* - heat energy flux into shell at time t^*.

The 1D – simulations with different time dependence of radiation temperature by TIGR-OMEGA-3T code

<table>
<thead>
<tr>
<th>#</th>
<th>t₀</th>
<th>T_f, max</th>
<th>E_a</th>
<th>t*</th>
<th>ρ*</th>
<th>T_i*</th>
<th>M_a</th>
<th>V_max</th>
<th>W*</th>
<th>W_Q*</th>
<th>η (%)</th>
<th>ρ</th>
<th>T_i,max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>275</td>
<td>327</td>
<td>13.9</td>
<td>569</td>
<td>3.8</td>
<td>0.17</td>
<td>0.31</td>
<td>22</td>
<td>7.7</td>
<td>47</td>
<td>190</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>265</td>
<td>310</td>
<td>14.4</td>
<td>536</td>
<td>3.7</td>
<td>0.20</td>
<td>0.29</td>
<td>17</td>
<td>6.3</td>
<td>47</td>
<td>239</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>250</td>
<td>283</td>
<td>15.2</td>
<td>420</td>
<td>3.3</td>
<td>0.24</td>
<td>0.26</td>
<td>9.9</td>
<td>4.1</td>
<td>44</td>
<td>214</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>275</td>
<td>365</td>
<td>6.6</td>
<td>309</td>
<td>3.2</td>
<td>0.1</td>
<td>0.25</td>
<td>8.9</td>
<td>3.0</td>
<td>28</td>
<td>173</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>265</td>
<td>350</td>
<td>7.1</td>
<td>433</td>
<td>3.4</td>
<td>0.11</td>
<td>0.27</td>
<td>15</td>
<td>4.9</td>
<td>43</td>
<td>192</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>250</td>
<td>318</td>
<td>8.0</td>
<td>501</td>
<td>3.4</td>
<td>0.16</td>
<td>0.25</td>
<td>13</td>
<td>5.2</td>
<td>48</td>
<td>239</td>
<td>33</td>
</tr>
</tbody>
</table>

Here: E_a – target absorbed energy; t^* - time of compression maximum; ρ^* – density, T_i^* - DT-ion temperature, W^* and W_Q^*-ignition margins without and with account of energy losses at time t^*; M_a – non-ablated part of Be-shell; V_{max}- velocity maximum of DT border; η – tritium burn up; ρ_{max} - density; $T_{i,max}$ – maximum of ion temperature at DT-burning.
The 2D - TIGR- OMEGA-3T code simulations for different $T_f(t)$ and radiation flux asymmetry in form of 4th-harmonic with amplitude $\gamma_4 = -1\%$

Ion temperature distribution at time of thermonuclear burn

$T_{f,\text{max}} = 265$ eV
$t_0 = 10$ ns

Density distribution at time of thermonuclear burn

$T_{f,\text{max}} = 250$ eV
$t_0 = 10$ ns
One-dimensional three-temperature calculations of double-shell target with liquid DT-fuel

<table>
<thead>
<tr>
<th>#</th>
<th>R1 (mm)</th>
<th>R2 (mm)</th>
<th>Vmax (mm/ns)</th>
<th>W* (g/cc)</th>
<th>WQ* (g/cc)</th>
<th>Tɨ* (keV)</th>
<th>DT ∫ρdr (g/cm²)</th>
<th>Au ∫ρdr (g/cm²)</th>
<th>ρmax (g/cc)</th>
<th>Ti,max (keV)</th>
<th>η (%)</th>
<th>Ndt (10¹⁷)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,20</td>
<td>0,24</td>
<td>0,28</td>
<td>8,3</td>
<td>5,2</td>
<td>454</td>
<td>0,65</td>
<td>4,66</td>
<td>252</td>
<td>34</td>
<td>45</td>
<td>4,0</td>
</tr>
<tr>
<td>2</td>
<td>0,20</td>
<td>0,25</td>
<td>0,30</td>
<td>9,2</td>
<td>5,6</td>
<td>471</td>
<td>0,64</td>
<td>5,20</td>
<td>249</td>
<td>34</td>
<td>47</td>
<td>4,2</td>
</tr>
<tr>
<td>3</td>
<td>0,20</td>
<td>0,26</td>
<td>0,28</td>
<td>9,7</td>
<td>5,7</td>
<td>463</td>
<td>0,66</td>
<td>6,10</td>
<td>244</td>
<td>33</td>
<td>48</td>
<td>4,3</td>
</tr>
<tr>
<td>4</td>
<td>0,26</td>
<td>0,30</td>
<td>0,29</td>
<td>7,8</td>
<td>5,0</td>
<td>384</td>
<td>0,78</td>
<td>4,75</td>
<td>206</td>
<td>40</td>
<td>48</td>
<td>9,3</td>
</tr>
<tr>
<td>5</td>
<td>0,25</td>
<td>0,30</td>
<td>0,29</td>
<td>7,8</td>
<td>5,0</td>
<td>399</td>
<td>0,77</td>
<td>5,48</td>
<td>219</td>
<td>40</td>
<td>49</td>
<td>8,4</td>
</tr>
<tr>
<td>6</td>
<td>0,24</td>
<td>0,30</td>
<td>0,28</td>
<td>8,2</td>
<td>5,0</td>
<td>373</td>
<td>0,70</td>
<td>5,90</td>
<td>198</td>
<td>35</td>
<td>48</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>0,30</td>
<td>0,34</td>
<td>0,28</td>
<td>6,5</td>
<td>4,2</td>
<td>303</td>
<td>0,78</td>
<td>4,40</td>
<td>169</td>
<td>41</td>
<td>47</td>
<td>14,2</td>
</tr>
<tr>
<td>8</td>
<td>0,30</td>
<td>0,35</td>
<td>0,27</td>
<td>5,3</td>
<td>3,3</td>
<td>257</td>
<td>0,70</td>
<td>4,62</td>
<td>151</td>
<td>36</td>
<td>46</td>
<td>13,8</td>
</tr>
<tr>
<td>9</td>
<td>0,30</td>
<td>0,36</td>
<td>0,23</td>
<td>3,9</td>
<td>2,3</td>
<td>188</td>
<td>0,57</td>
<td>4,39</td>
<td>118</td>
<td>25</td>
<td>40</td>
<td>11,9</td>
</tr>
<tr>
<td>10</td>
<td>0,36</td>
<td>0,40</td>
<td>0,26</td>
<td>2,7</td>
<td>1,8</td>
<td>168</td>
<td>0,64</td>
<td>3,32</td>
<td>125</td>
<td>30</td>
<td>38</td>
<td>19,6</td>
</tr>
<tr>
<td>11</td>
<td>0,35</td>
<td>0,40</td>
<td>0,25</td>
<td>2,2</td>
<td>1,3</td>
<td>140</td>
<td>0,55</td>
<td>3,46</td>
<td>110</td>
<td>15</td>
<td>18</td>
<td>8,6</td>
</tr>
<tr>
<td>12</td>
<td>0,34</td>
<td>0,40</td>
<td>0,21</td>
<td>1,5</td>
<td>0,9</td>
<td>112</td>
<td>0,46</td>
<td>3,40</td>
<td>94,0</td>
<td>2,9</td>
<td>0,5</td>
<td>0,23</td>
</tr>
</tbody>
</table>

The parameters of optimum double-shell targets with DT-fuel as liquid or gas are close
2D - TIGR- OMEGA-3T code simulations of double-shell target for radiation flux asymmetry as $\gamma_4 \cdot P_4(\mu)$

Here: γ_4 – amplitude of radiation flux asymmetry in form of 4-th harmonic; ρ_{dt} - DT initial density;

Cryogenic targets tolerate the irradiation asymmetry in ~1,5 times bigger than gas-filled targets despite decrease in ignition margin also in ~1,5 times.
2D-TIGR-OMEGA-3T code simulations of double-shell targets with DT-gas and DT-liquid at radiation parameters: $T_{f,\text{max}} = 250 \text{ eV}$, $t_0 = 1.0$ and $\gamma_4 = -1\%$

- **DT-gas** ($\rho_{\text{dt}} = 0.07 \text{ g/cc}$): N_{dt} decreases for 17% in 2D-calculation.

- **DT-liquid** ($\rho_{\text{dt}} = 0.2 \text{ g/cc}$): N_{dt} decreases for 5% in 2D-calculation.

Ion temperature distribution at time of thermonuclear burn

Density distribution at time of thermonuclear burn

The compression symmetry improves in ~ 1.5 time and the decrease of neutron yield is considerably less in targets with DT-liquid than with DT-gas.
The 1D-simulations with account of radiation transfer in spectral kinetic and three-temperature approximations (the choice of Cu-concentration in Be-ablator)

<table>
<thead>
<tr>
<th>#</th>
<th>X_{Cu} %</th>
<th>Radiation Approx.</th>
<th>E_a kJ</th>
<th>t* ns</th>
<th>ρ* g/cc</th>
<th>T_i* keV</th>
<th>M_a</th>
<th>V_{max} m/ns</th>
<th>W*</th>
<th>W_Q*</th>
<th>ρ_{max} g/cc</th>
<th>T_{i,max} keV</th>
<th>η %</th>
<th>N_{dt} 10^{17}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>S.K.</td>
<td>335</td>
<td>14,0</td>
<td>226</td>
<td>3,0</td>
<td>0,06</td>
<td>0,24</td>
<td>5,0</td>
<td>2,5</td>
<td>140</td>
<td>10</td>
<td>14</td>
<td>0,8</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>3T; f=1/4</td>
<td>347</td>
<td>13,8</td>
<td>555</td>
<td>4,0</td>
<td>0,20</td>
<td>0,32</td>
<td>17</td>
<td>7,7</td>
<td>266</td>
<td>28</td>
<td>48</td>
<td>2,6</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>3T; f=3/8</td>
<td>360</td>
<td>12,8</td>
<td>537</td>
<td>5,2</td>
<td>0,12</td>
<td>0,33</td>
<td>18</td>
<td>7,4</td>
<td>244</td>
<td>26</td>
<td>45</td>
<td>2,5</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>S.K.</td>
<td>342</td>
<td>15,0</td>
<td>334</td>
<td>3,2</td>
<td>0,19</td>
<td>0,24</td>
<td>7,6</td>
<td>4,1</td>
<td>182</td>
<td>21</td>
<td>38</td>
<td>2,1</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>3T; f=1/4</td>
<td>296</td>
<td>15,3</td>
<td>396</td>
<td>3,7</td>
<td>0,29</td>
<td>0,23</td>
<td>7,7</td>
<td>4,0</td>
<td>220</td>
<td>23</td>
<td>42</td>
<td>2,3</td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>3T; f=3/8</td>
<td>311</td>
<td>14,6</td>
<td>413</td>
<td>3,2</td>
<td>0,25</td>
<td>0,25</td>
<td>8,7</td>
<td>4,5</td>
<td>226</td>
<td>24</td>
<td>43</td>
<td>2,4</td>
</tr>
<tr>
<td>7</td>
<td>0.9</td>
<td>S.K.</td>
<td>290</td>
<td>15,8</td>
<td>359</td>
<td>3,1</td>
<td>0,28</td>
<td>0,23</td>
<td>6,9</td>
<td>4,0</td>
<td>199</td>
<td>23</td>
<td>42</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Here: X_{Cu} – copper atomic concentration in Be-ablator;
S.K.- spectral kinetic and 3T-three- temperature approximations for radiation transfer;
f – parameter in formula for limit of radiation energy flux: \(q_f^* = f \cdot c \sigma T^4 \)

The optimal copper concentration near to \(\sim 0,3\% \) for that the ignition margin \(W_Q^* \approx 4 \).
1D-simulations of double-shell targets with account of spectral kinetic radiation transfer and turbulent mixing by the $k\varepsilon$-model *)

Here: $\{\alpha\}$ - the set of $k\varepsilon$-model constants for self-similar law of light fluid penetration into heavy one: $L_b = \alpha A g t^2$, A - Attwood number, g-acceleration, t - time; M_{cl}^* – “pure“ fuel part (without Au-impurity).

Turbulent mixing reduces the ignition margin W_Q^* in ~ 1,5 times to $W_Q^* \approx 2-3$

1. The ignition margin $WQ^* \sim 4$ at convergence ratio $R_0/r_{\text{min}} \sim 70$ are obtained in 1D-calculations of gas-filled double-shell targets for radiation temperature ~ 270 eV and energy absorbed by target ~ 300 kJ.

2. The more low values $R_0/r_{\text{min}} \sim 50$ were attained in 1D-calculations of double-shell targets with DT-liquid but ignition margin decreased to $WQ^* \sim 2.5$.

3. The 2D-simulations show that admissible asymmetry of radiation flux in form of 4th harmonic follows $\gamma_4 \sim (R_0/r_{\text{min}})^{-1}$ and for cryogenic targets is: $\gamma_4 \leq \pm 1.5\%$.

4. The account of turbulent mixing by the $k\varepsilon$-model leads to considerable degradation of double-shell target compression and thermonuclear burning.

5. The considering of possible sources of compression asymmetry and turbulent mixing result in conclusion about impossibility to achieve a reliable ignition of considered targets with energy ~ 2.8 MJ in the 2nd harmonic of the Nd-laser.

6. However, experiments with double-shell targets would give the unique information on high energy density physics.
THANK YOU FOR ATTENTION