P.N.Lebedev Physical Institute of Russian Academy of Sciences National Research Nuclear University «MEPhI»

CONCEPTION of CRYOGENIC TARGET FACTORY for MASS MANUFACTURING & HIGH-REP-RATE DELIVERY of the IFE TARGETS <u>E.R. Koresheva</u> I.V.Aleksandrova, E.L.Koshelev, O.N.Krokhin, A.I.Nikitenko, I.E.Osipov

34th European Conference on Laser Interaction with Matter Moscow, Russia, September 18-22, 2016

Academic Programs and External Partners

The work was performed by the LEBEDEV PHYSICAL INSTITUTE (LPI) in collaboration with other RF Research Centers & under financial support of the Russian Academy of Sciences, Russian Foundation of Basic Research, International Science & Technology Center, International Atomic Energy Agency, EU project HiPER.

Lebedev Physical Institute of RAS (LPI): E.R.Koresheva (projects manager), O.N.Krokhin (LPI & MEPhI), I.V.Aleksandrova, T.P.Timasheva, O.M.Ivanenko, E.L.Koshelev, et al.

Federal State Unitary Enterprize "Krasnaya Zvezda": G.D.Baranov, I.D.Timofeev, A.I.Safronov, G.S.Usachev, et al.

- A.A.Dorodnitsyn Computer Center of RAS: A.A.Belolipetskiy, E.A.Malinina
- Institute of Design Problems in Microelectronics of RAS: L.V.Panina
- M.V.Lomonosov Moscow State University: L.S.Yaguzhinskiy, A.A.Tonshin
- National Research Center "Kurchatov Institute": B.V.Kuteev
- Power Efficiency Center INTER RAO UES: I.E.Osipov, V.N.Nikolaev
- CryoTrade, Ltd.: M.F.Klenov, A.V.Kutergin, P.N.Alekseev

Polymer (CH) shells used in our researches

Russia

UK

CH shells of Ø 1,0—1,8 mm made at LPI, Russia CH shell of ~ Ø 2 mm and a shell batch made at STFC, UK

CH shell is an important element of the cryogenic target

In our research we have used CH shells ($\emptyset \leq 1.8$ mm) made at the Termonuclear Target Lab. of the Lebedev Physical Institute (LPI, Russia)

■ Large CH shells (Ø ≥ 1.8 mm) have been delivered by the Science & Technology Facility Council (STFC, UK)

CH shells covered with a thin layer of Pb have been delivered by the Institute for Laser Engineering (ILE, Osaka Univ., Japan).

Cryogenic Target Factory (CTF) is a main building block of IFE reactor

Main building blocks of IFE reactor

CTF main specifications

- 1. Free-standing targets mass-production:
- ~ 1 000 000 targets/day (upon the average)
- 2. High rep-rate target delivery:
- injection velocity of 200 400 m/s
- rep-rate of ~10 Hz (laser) or 0.1 Hz (Z-pinch)
- 3. Survivability of a fuel core during target delivery
- 4. On-line characterization of a flying target
- 5. Tritium inventory minimization

Direct-drive Cryogenic Fuel Target

Fuel layer specifications

- Thickness nonuniformity: Nu < 1.0%
- **Inner surface roughness:** δ < 1 um rms in all modes

CTF critical issue:

Development of the RELIABLE, EFFECTIVE, and INEXPENSIVE METHODS of CRYOGENIC TARGETS MASS - PRODUCTION <u>LPI CONTRIBUTION TO THE PROBLEM OF CRYOGENIC TARGETS MASS-PRODUCTION</u> \Rightarrow FST LAYERING METHOD \Rightarrow Fuel layering in the moving free-standing targets \Rightarrow FST layering goes during t < 15 s. Free-standing targets move one-by-one in the LM.

Initial cryogenic target with liquid D₂-fuel

Finished cryogenic target with solid D₂ layer

CH shell: \varnothing 1.23 mm Layer: 41 um, D₂+20% Ne Nu < 2%, δ < 0.5 um

FST Layering during t < 15 sec

FST-layering module (LM): general view & physical layout

Cryogenic experiment with FST-layering module

Cryogenic target injection into the test chamber at 5 K

Target landing Rep-rated injection of 1 mm targets at 5K, f =0.1Hz (batch mode)

t = 0

222.229

Our calculations have shown that isotropic ULTRAFINE FUEL LAYER is required for target survival in the delivery process

To suppress the process of fuel surface degradation we propose to apply isotropic ultrafine fuel layers, which can be created using the FST layering method

DATA FOR CALCULATION: SOMBRERO reaction chamber: radius is 6.5 m, T_{ct} = 1758 K, j = 56 Wt/cm²; injection velosity of a target: v_{ini} = 400 m/sec; time of target flight inside a chamber **16** msec; target T just before irradiation T=18.5K; Target : CH shell of \emptyset 4 mm and 45 um-thick, fuel D₂-layer of 200 um-thick 6

The FST technology is unique and there is not alternative of that kind

FST principle:

- Targets are moving and free-standing
- Target injection between the basic units of the LM
- Time & space minimization for all production steps, which ensures tritium inventory minimization

• FST result:

A batch mode is applied, and high cooling rates are maintained (1-50 K/s) to form spherically symmetric & smooth isotropic ultra-fine solid layers inside freerolling targets

FST status:

FST technology and facilities created on its base are protected by the RF Patent and 3 Invention Certificates

NEXT STEP: FST technology demonstration for cryogenic targets of a reactor scale with rep-rate production up to ~1 Hz and more Reactor-scale targets: CH shells Ø2-4 mm, layer thickness ~200-300 um CTF-LPI ⇒ The conception of a Cryogenic Target Factory is based on 3 approaches proposed & examined at LPI

- □ FST technology ⇒ mass-production of moving freestanding targets (FST) with ultrafine fuel layer
- □ Injection transport of a target between the CTF
 subsystems ⇒ gravitational, electromagnetic & magnetic
 levitation (maglev)
- Application of the HTSC quantum levitation effect for almost frictionless motion of the cryogenic targets at their handling & delivery

The POP and computer experiments have proved the interaction efficiency of the proposed approaches

FST -layering : freestanding cryo target

T = 5 K

Targets injection with the rate of 0.1Hz (batch mode)

HTSC coated CH shell levitating above magnet

Image Fourier transforms of the shells with different imperfection

CTF-LPI \Rightarrow modular setup for development & fine-tuning of the FST transmission line at a high rep-rate (1-10 Hz)

Basic elements of the CTF-LPI have been tested by LPI on the prototypical models. That allows risk minimization at the CTF construction & start-up

Layering module (LM): FST method for fuel layering inside free-rolling targets

Cryogenic target characterization: 100-projections visual-light tomograph with 1 um space-resolution

Startup of the FST facility at the LPI in 1999

Transport systems: Facility for research in the area of HTSC levitation

Fill facility: Filling of CH shells with gaseous fuel up to 1000 atm at 300K

Handheld Shell Container (SC) for fuel filled shells transport at 300 K from the fill system to the FST-layering module

FST facility created at LPI: CURRENT PARAMETERS

 \Rightarrow Diffusion ramp filling of a batch of free-standing CH shells up to 1000 atm at 300 K with H₂, D₂, or their mixtures (molecular & atomic diffusion mode are available)

 \Rightarrow Formation of cryogenic layers inside moving free-standing CH shells \emptyset 0.8–1.8 mm

⇒ Formation of isotropic ultra-fine cryogenic layers. Application of such layer gives the following advantages:

<u>Delivery process</u>: Enhance mechanical strength & thermal stability of a fuel layer

<u>Implosion process</u>: Avoid instabilities caused by grain-affected shock velocity variations

CH shell: \varnothing 1.23 mm Layer: 41 um, D₂+20% Ne Nu < 2%, δ < 0.5 um

\Rightarrow Tritium inventory minimization:

- Fuel filling: minimal spatial scale due to close packing of free-standing targets
- <u>Fuel layering</u>: minimal layering time $t_f < 15$ sec (conventional methods: $t_f \sim 24$ hrs)

- <u>Target transport</u>: minimal transport time between the basic units of the CTF due to realization of injection transport process

 \Rightarrow **Rep-rate mode:** current production rate is about v = 0.1 Hz

⇒ FST layering is the most inexpensive technology (< 30 cents per 1 target)

Demonstration of the fill facility operation for CH shells of ~ 1 mm diam.

Vapor bubble behavior inside the cryogenic target as function of temperature and fill pressure P_{fill} (fill density ρ_{fill}) of a fuel

$$\frac{V_{vapor}}{V_0} = \alpha^3 \qquad \alpha(\rho_{fill}, T) = \frac{(\rho_{liquid} - \theta \rho_{cp})^{1/3}}{(\rho_{liquid} - \rho_{vapor})^{1/3}} \qquad \theta = \frac{\rho_{fill}}{\rho_{cp}}$$

CH shell \varnothing 980 um, P_{fill} = 765 atm H₂, θ = 1.32

RESULTS OF CALCULATION: Diffusion fuel filling of a reactor-scaled target

CALCULATED TIME FOR the BODNER TARGET RAMP FILLING

up to a FILL PRESSURE of 1100 atm

Fuel	molecular mode	atomic mode	Notations:
D ₂ fuel	t _{md} = 7 hrs	t _{ad} <u>~</u> 5 hrs	t _{md} – time of fuel filling in molecular diffusion mode
DT fuel	t _{md} <u>~</u> 8 hrs	under consideration	Shell material - polyimide, E= 15 GPa; P _{buckle} =0.3376 atm

Baseline design of high gain direct-drive target [Bodner et al. Phys. Plasmas 7, 2298, 2000]

$CTF-LPI \Rightarrow FST-layering module designed by LPI for EU project HiPER$ can serve as a prototype for 1 Hz operation in a batch mode

Drawing of the FST-layering module

General units& estimated weight

FST-layering	Weight,
module	kg
Helium cryostat (total)	41,3
Helium cryostat casing	16,8
Nitrogen vessel	10,1
Thermal screen	6,9
Outer helium vessel	7,5
Insert (total)	5,88
 sluice-safe unit 	2,2
- layering module	2,9
- shaft of lock	0,07
- key	0,71
Optical test chamber (total)	8.95
- helium chamber with PD	2,4
- TC thermal screen	1,0
- TC frame	2,8
- flange	1,45
- windows	0,95
 location bracketry 	0,35
Frame (total)	13,7
SC with interface (total)	1,7
SC	0,25
Interface	1,45
TOTAL	71,53

FST-layering module designed for HiPER: we have constructed a number of mockups and carried out the mockups testing to minimize possible risks

Cryostat and the sample holders for HTSC maglev study at T < 20 K

Optical test chamber

Shell container (SC)

A set of the FST-layering channels (LC)

Positioning device with the ring manipulator

Target collector: demonstration of targets gravity injection

EXPERIMENT: a double-spiral FST-layering channel (LC) is a good prospect for reactor targets production

Mockups of the spiral LC

#7, #8 \Rightarrow single-spiral LC (SSLC), #9 \Rightarrow double-spiral LC (DSLC), Cupper tube OD=38mm

Schematics of measuring the time

of target movement inside the LC 1 – optronics couple made from IR-diodes

FOURIER HOLOGRAPHY OF IMAGE RECOGNITION: promising way for on-line characterization of a flying target [Nikitenko, et al. Nuclear Fusion, 2006]

Computer experiments demonstrated much promise of Fourier holography because it allows

- Recognition of the target imperfections in both low- & high- harmonics
- Quality control of both a single target and a target batch
- Simultaneous control of the injected target quality, velocity & trajectory

Operation Principle:

Recognition signal is maximal if the real image is in strict conformity with etalon image

Operation Rate:

Operation rate of the Fourier holography scheme makes several microseconds

TARGET SURVIVAL RESUME ⇒ Successful target delivery requires both multiple target protective metods & ultra-fine fuel layers formation

PROTECTIVE SABOT

we have optimized - Shape of target support - Target injection temperature -Sabot material

CRYOTARGET

Protective sabot with cryogenic target inside it

ISOTROPIC ULTRA-FINE FUEL LAYER with inherent survival features

- Withstand to higher heat- & g-loads than a crystalline layer

- No influence on shock wave propagation through isotropic ultra-fine fuel layer

Cryogenic target with the ultra-fine D₂ layer

OUTER PROTECTIVE LAYERS

Cryogenic target with Pt/Pd outer layer (left) and with solid O₂ outer layer (right)

PROTECTIVE COVER

forms a wake area in the fill gas to avoid convective heating

SABOT is USED at a STAGE of TARGET TRANSPORT & INJECTION INTO a REACTOR CHAMBER

SABOT is used for

- to transfer target from the LM to injector
- to transfer of an impulse of the movement on a target inside the injector
- to protect target from the heat- and gloads arising during target acceleration

Concept of the device for Target-&-Sabot high rep-rate assembly

Prototyping a gravity assembly of "TARGET-&-SABOT" units at T < 18K & refining a trajectory control of flying shells

Gravity injector (test setup)

developed by the LPI and the Rutherford Appleton Laboratory (UK) 1989-1991

Prototyping a gravity assembly of "Target-&-Sabot" at T = 10 K

Gravity delivery of cryogenic target from the FST-layering channel into a cylindrical cavity

Double-beam oscilloscope data of the injected shells

Prototype of a gravity injector integrated with the FST- layering channel High-speed video filming of injected shell into the test chamber; Video-camera KODAK ECTAPRO 1000 IMAGER

Refining *on-line* control of the flying shells trajectory

Data for 50 shots

(for CH shells of $\emptyset \sim 1 \text{ mm}$)

1. Trajectory angular spread≤ 3 mrad2. Injection velocity0.43 - 0.55 m/s

20

Demonstration of the electromagnetic transport of sabot from soft ferromagnetic at cryogenic temperatures (T = 77 -to- 5 K)

Experiment: Sabot velocity v (m/s) at the coil exit vs. Jω Maximal overloads: a = 320g (at v = 8 m/s)

Experiment: Magnetic penetration of ARMCO iron is enough high at cryogenic temperatures. This makes it possible to accelerate sabot up to 3 - 8 m/s using only one coil. These velocities ensure target transport at a start position in the injector.

Problems:

- 1. Heat-loads due to sabot/guiding bore friction
- 2. Sabot tilting & wedging inside guiding bore

<u>Resume:</u> sabot trajectory correction & elimination of friction are needed

❑ Correction of a trajectory of a cylindrical HTSC sabot using the magnetic field (RFBR proj. #15-02-02497)

Experiment: HTSC sample (8x2x2 mm) aligns along the line of minimal magnetic induction between 2 rectangular permanent magnets, T=80K

HTSC QUANTUM LEVITATION EFFECT FOR TARGET HANDLING & TRANSFER: We have studied the HTSC samples made by different technology

Ι

YBa₂Cu₃O samples created by the technology of solid phase reactions (made at LPI)

Sabot. Model C2: 8 x 6 x 2 mm

Sabot. Model C3: OD 5 mm, ID 2 mm, length 16 mm

HTSC substrate (with CH shell on it) levitating over the PMG-1

II

HTSC coated CH shells.

HTSC layer: YBa₂Cu₃O powder distributed over the polymer matrix (made at LPI)

*/ PMG = permanent magnets guideway

III HTSC tape:

12 mm-width, 65-um total thickness including 1 um-thick epitaxial GaBa₂Cu₃O film Technology: thin films deposition using laser ablation (made at SuperOx, Moscow)

Sabot. Model CX: 8 x 4 mm, length 24 mm

Sabot. Model C1: 5 x 5 mm, length 16 mm

Sabots C1 and CX levitating over the PMG-3 at T = 80 K

Permanent Magnetic Guideway (PMG-3): magnetic braking of lateral motion of the HTSC samples (demo at T = 80 K)

YBa₂Cu₃O pellet of 12.4 mm-diam, 1-mm-thick

HTCS material study: HTSC samples stable levitation & movement in the magnetic field of the permanent magnets

□ Stable levitation of HTSC samples at different temperatures (NdFeB magnets)

Ordered motion of HTSC carrier with CH shell over the magnetic rails (SrBa ferrite magnets)

T = 80 K, PMG-3a <u>CH shell:</u> \emptyset 2 мм (made at LPI) <u>HTSC carrier:</u> ~ 5 mm^{2,} **YBa₂Cu₃O** (made at LPI) □ HTSC sample cycling over the magnetic rails (NdFeB magnets)

T = 80 K, PMG-4 HTSC tape (SuperOx, Moscow): 12 mm-width, 65-um total thickness including 1 micron-thick epitaxial GaBa₂Cu₃O film

Conception of electromagnetic injector with HTSC sabot (HTSC material is under consideration)

injector, which enhance the operating efficiency of maglev accelerator

E-m injector + HTSC projectile. A design options with the HTSC sabot

Ref.: The possibility of HTSC sample acceleration using 2 coils has been proved in model experiments carried out in Gifu Univ., Japan [H.Yoshida, 3rd IAEA TM, Oct. 2004, Rep.Korea]

The next step is our new project started in December 2015 under IAEA contract # 20344/R0

Project title: FST transmission line for mass manufacturing of IFE targets

- Project goal is modeling (exp. & theory) of the fabrication and injection processes of an FST transmission line for mass manufacturing of IFE targets.
- □ **Project approach** is the FST layering method developed at LPI.
- Project targets are CH shells of Ø ~ 4 mm, and the layer thickness of ~ 200 um for pure solid fuel and of ~ 300 um for in-porous solid fuel.

Our background for this project presented at

- 1st Meeting of IAEA CRP on Pathways to Energy from Inertial Fusion: Materials beyond Ignition (Feb. 2016, Vienna, Austria)
- 7th IAEA TM on Physics and Technology of IFE
 Targets & Chambers (March 2015, Vienna, Austria)
- 25th IAEA FEC (Oct. 2014, St. Petersburg, Russia)

Work group meetings

SUMMARY

- □ FST layering method has been developed at LPI, which forms an isotropic ultrafine & spherical fuel layer inside unmounted free-rolling targets
- Our study has shown that application of such layers makes the risk of layer destruction minimal during cryogenic target delivery – ISTC #1557, IAEA #13871
- □ A full scaled scenario of the FST transmission line operation has been demonstrated at a small scale (targets < Ø 2 mm) ISTC #512, IAEA #11536
 - \Rightarrow Fueling a batch of free-standing targets (up to 1000 atm D₂ at 300 K),
 - \Rightarrow Fuel layering using FST technology: cryogenic layer up to 100 um-thick,
 - \Rightarrow Target injection into the test chamber with a rate of 0.1 Hz
 - \Rightarrow Target tracking using the Fourier holography approach (computer expts)
- □ A number of injectors has been considered to study the cryogenic target delivery, including gravitation, electromagnetic and maglev one
- ❑ A number of POP experiments prove the efficiency of using the HTSC quantum levitation effect for free-standing target positioning & transport. We continue the study in the frame of the RFBR project # 15-02-02497.
- ❑ A prototypical FST layering module for rep-rate production of HiPER-scaled cryogenic targets has been designed based on the results of calculations and mockups testing. Work was accomplished in the frame of EU project HiPER.
- □ LPI continue developing the R&D program on CTF-LPI in the frame of new generation project under IAEA contract # 20344/R0 (started at Dec. 2015)

Cryo target with ultrafine fuel layer (⊘1.5mm)

Targets rep-rate injection under gravity: 0.1Hz, 5K

Cryogenic gravity injector

HTSC maglev for target positioning & transport 27