

Photoionized plasmas induced using EUV sources driven by nanosecond laser pulses

A. Bartnik, W. Skrzeczanowski, P. Wachulak, I. Saber, H. Fiedorowicz, T. Fok, Ł. Węgrzyński

Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland

Our main activity:

- development of laser-plasma soft X-ray and extreme ultraviolet sources
- research on interaction of intense SXR and EUV pulses with solids or gases

Our research interests:

- EUV and SXR imaging
- radiobiology
- micromachining and surface modification of polymers
- photoionization experiments
 - laboratory astrochemistry (planetary atmospheres)
 - laboratory astrophysics
 - warm dense matter
 - EUV + plasma surface treatment

Introduction - laboratory astrophysics

Photoionized plasmas – experiments using High Energy Density facilities (HED)

Mancini, R.C. et al. Phys. Plasmas 16, 041001 (2009)

12 beams from the GEKKO-XII 4 kJ of total energy at 1.2 ns

Fujioka, S. et al. Nature Phys. 5 (2009) 821-825

G. A. Rochau et al. The Z Astrophysical Plasma Properties collaboration, Phys. Plasmas 21, 056308 (2014)

Introduction - laboratory astrochemistry

to pump

FTIR

IR

Detector

Vacuum

Soft X-ray

chamber

CaF₂ window

S.I. Ramirez et al. Organic chemistry induced by corona discharges in Titan's troposphere: Laboratory simulations, Advances in Space Research 36 (2005) 274–280

S. Pilling et al., Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays Mon. Not. R. Astron. Soc. 411, 2214-2222 (2011)

to beamline

IR

Source

Sample

R. Kołos, A novel source of transient species for matrix isolation studies, Chemical Physics Letters 247, 289-292 (1995)

Introduction - photoionized plasma for surface treatment

A. Bartnik et al., Appl Phys A 109, 39-43 (2012)

Laser produced plasma EUV source: 0.8 J / 4 ns laser

EUV induced photoionized plasma: Xe II, Kr II inner shell emission

EUV induced photoionized plasmas: Ne and molecular gases

A. Bartnik et al, Physics of Plasmas 21, 073303 (2014)

SF₆ photoionized plasma

N₂ – optical spectra

Photoionized plasma created in nitrogen. 1 min./10 Hz exposure

Experimental spectrum, 1min./10 Hz exposure

Simulated spectrum using a LIFBASE code

J. Luque and D.R. Crosley, "LIFBASE: Database and spectral simulation (version 1.5)", SRI International Report MP 99-009 (1999) N_2 – optical spectra

J. Luque and D.R. Crosley, "LIFBASE: Database and spectral simulation (version 1.5)", SRI International Report MP 99-009 (1999)

- photoionization experiments using the LPP EUV sources were demonstrated
- inner shell processes were described and their influence on plasma formation was indicated
- examples of spectra originating from photoionized plasmas induced in atomic and molecular gases were shown
- from EUV and UV/Vis spectra strong contribution of molecular processes in photoionized plasmas was indicated
- electron and ion temperatures from emission spectra were estimated

ACKNOWLEDGEMENTS

This work was supported by the grant UMO-2013/09/B/ST2/01625 of the National Science Centre, Poland, European Commission's Seventh Framework Program (LASERLAB-EUROPE) grant agreement no. 654148, and partially funded by the EU from EUROPEAN REGIONAL DEVELOPMENT FUND, project number: WND - POiG.02.01.00—14—095/09.