

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВНИИЭФ

Laser Facility Development and Principle results during recent 5 years

S.A.Belkov, S.G.Garanin, Yu.V.Shagalkin

RFNC-VNIIEF

- Complex of buildings to house systems of laser facility was developed. Construction activity was begun.
- Set of input test benches to control regular large aperture optical components and high voltage electronics were developed.
- Technologies of serial production of key elements and component parts of laser were created.
- Prototype units of component parts were manufactured and tested.
- Industry is ready to make component parts.

Common view of laser facility

Building construction

top - 30.09.2015 bottom - 16.09.2016

4 pass op^{*}

`ain laser amplifier

Numbers of laser beams will be 192

8 beams power amplifier module

Laser facility will have 2 target chambers. Second chamber will be used for different application studies as Multipurpose Research Center (MRC)

Laser facility will have huge numbers largescale

All elements are needed to test before they will be mounted. For this purpose set of test benches of input control were developed.

Optical elements fabrication errors, influence on the beam quality

Test benches for interferometric control

Focal distance measurements

- Determination of actual values of focus in the range from 5 to 30 m lens with diameter from 100 to 600 mm with inaccuracy ≤1 mm.
- 2. Measuring of radiation wave front transmitted through the lens with diameter up to 600 mm with inaccuracy <0.002λ (RMS).

Phase shifting dynamic interferometer with a source on 0.6328 mm, based on the unequal-path scheme interferometer of Twyman-Green.

Test benches for interferometric control

Input control of an active Nd glass disk

- Measurement of the transmitted and reflected radiation wave fronts for flat optics with diameter up to 710 mm with inaccuracy < 0.002λ (RMS)
- Surface pattern with inaccuracy ≤1Å at the single-count measurement in 1 mm² square

Phase shifting dynamic interferometer with a source on 0.6328 mm, based on the Fizeau scheme (right) and noncontacting profilometer (left), based on the Twyman-Green scheme.

Interferometric testing of large-size lenses TSF and CSP

Wave front distortions with spatial scales >33 mm PV=0.15λ (0.3λ) RMS_{gradient}=7 (7) nm/cm Wave front distortions with spatial scales from 2.5 to 33 mm Rq= 3 (1.8) nm

Interferometric testing of Nd slabs

Nd slab with sizes 808.5x458x41 mm.

Wave front distortions with spatial scales >33 mm PV=0.2λ (0.3λ) RMS_{gradient}= 13 (7) nm/cm Wave front distortions with spatial scales from 2.5 to 33 mm Rq=1.8 (1.8) nm

Investigation of deformable mirror possibility to compensate aberration of optical perturbations

Energy density distribution in cross section of diaphragm 4-th path TSF before (top) and after (bottom) wave front correction Concentration energy function at the output of laser facility power amplifier before (blue) and after (red) wave front correction

Adaptive system of wave front correction

DM with control Far field distribution system

Wave front registration system

After correction beam divergence less then 1.7.10⁻⁵ rad

Now we have adaptive system to complete two 8 beams modules.

Test results of adaptive system

after reduction to flat less than $\triangle PV \le 0.2 \text{ mcm/hour}$, after reduction to given wave front $\triangle PV \le 0.2 \text{ mcm/hour}$. Mechanical hysteresis less than $\Gamma \le 14\%$

Automatic alignment system of optical channel of power amplifier

Automatic alignment system gives accuracy in far field zone better than of 10⁻⁵ rad

Electric capacitor bank module

Prototype

Electric capacitor bank module consists of high voltage unit and rack with controlling system.

- Working voltage 24 kV
- Energy per module 835 kJ
- Solid state semiconductor switch
- Modules full numbers 432

Preliminary test showed robust of prototype.

Now first amplifier block with 7 amplification sections is under testing.

We began serial production of these modules in 2016

Model of indirect drive target

3D-model

Prototype no cryogenic target

Model of cryogenic target printed using additive technology

Boxes assembly stand

Thank you for attention