New Features in COMPLEX INTERFEROMETRY Diagnostics

Milan Kalal^{1,2}, Michal Krupka^{1,2}, Jan Dostal²

1) FNSPE, Czech Technical University in Prague, Czech Republic 2) Institute of Plasma Physics AS CR, v.v.i., Prague, Czech Republic

kalal@fjfi.cvut.cz

34th ECLIM, Moscow, September 23, 2016

HOW COMPLEX INTERFEROMETRY CAME TO ITS EXISTENCE ?

Through measurements of magnetic field profiles spontaneously generated in laser produced plasmas

$$\theta = 1.51 \,\lambda_p^2 \int \frac{nB \,dl}{10^{23} (1 - n/n_{cp})^{1/2}}$$

Spontaneous magnetic fields in laser produced plasma

Nomarski type Interferometer with Fresnel Biprism

The very first Complex Interferogram

Milan Kalal Barry Luther-Davies

1986

Australian National University Canberra, Australia

Measurement of

Spontaneously Generated Magnetic Fields In Laser Produced Plasma

3 Degrees of Freedom

Complex Interferogram Experimental 3 Degrees of Freedom

EXAMPLE OF THE VERY FIRST COMPLEX INTERFEROGRAM ANALYSIS

The very first *Complex Interferogram* of spontaneously generated MG fields successfully recorded at PALS (2015)

T. Pisarczyk, M. Kalal et al, Physics of Plasma 22, 102706 (2015) Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

KEY REQUIREMENT

STABILITY

OF THE DIAGNOSTIC SYSTEM

Interferometry, HILT, Szeged, Hungary

Interferometry, HILT, Szeged, Hungary

Signal

Reference

Difference

Synthetic

Amplitude

National Commision of Atomic Energy, Buenos Aires, Argentina

National Commision of Atomic Energy, Buenos Aires, Argentina

Signal

Amplitude

Difference

Synthetic

Phase shift

COMPLEX INTERFEROGRAM ANALYSIS

While making interferometry, the *final interferogram i(y,z)* is a *superposition* of a series of *instantaneous interferograms i(y,z,t)* recorded trough the *duration* of the *diagnostic* beam pulse *f(t)*

$$i(y,z,t) = a_r^2(y,z,t)f(t) + a_s^2(y,z,t)f(t) + +2a_r(y,z,t)a_s(y,z,t)\cos[2\pi(\omega_0 y + \nu_0 z) + \varphi(y,z,t)]f(t)$$

Here $a_r(y,z,t)$ and $a_s(y,z,t)$ are the *instantaneous amplitudes* of the *reference* and the *signal* beams, ω_0 and ν_0 are the *spatial frequencies* in the directions y and z (in the *plane of interferogram*), respectively,

and *q(y,z,t)* is the *instantaneous phase shift* between the *reference* and the *signal* beam.

Intensity [arb.units]

The shape of the *diagnostic* pulse *f(t)* can be defined (without any lose of generality) to satisfy the following criteria

 $f(t) = f_s(t) + f_a(t) \ge 0$ Intensity cannot be **negative**

Time t=0 is selected to be in the center of its symmetric - $f_s(t)$ as well as antisymmetric - $f_a(t)$ part.

As a result of that the following expressions will be true:

$$\int_{-\infty}^{+\infty} t^{2n+1} f_s(t) dt = 0 \quad \text{and} \quad \int_{-\infty}^{+\infty} t^{2n} f_a(t) dt = 0$$

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{+\infty} f_s(t) dt = 1 \quad \text{Intensity can be normalized}$$

Let us now suppose that, in principle, both the *phase shift* $\varphi(y,z,t)$ and the *amplitudes* $a_s(y,z,t)$ and $a_r(y,z,t)$ of the *diagnostic* beam can *evolve* in time due to *temporal changes* of characteristics of the *object* under investigation as well as of its *own*.

Keeping this in mind it becomes useful to express these quantities in the form of the *first order Taylor expansion* with *representative* values $\varphi(y,z)$, $a_s(y,z)$ and $a_r(y,z)$ as well as the corresponding *time derivatives* taken at the time *t=0*

$$\varphi(y, z, t) = \varphi(y, z) + \varphi'(y, z)t$$

$$a_{s}(y,z,t) = a_{s}(y,z) + a_{s}'(y,z)t$$

$$a_r(y,z,t) = a_r(y,z) + a'_r(y,z)t$$

Performing the *time integration* (substituting the expansions)

$$i(y,z) = \int_{-\infty}^{+\infty} i(y,z,t)dt$$

and considering only the *most relevant terms* we can get the *modified* form of the *usual* interferogram formula

$$i(y,z) = a_r^2(y,z) + a_s^2(y,z) + a_s^2(y,z) + 2a_r(y,z)a_s(y,z)|q(y,z)|\cos[2\pi(\omega_0 y + \nu_0 z) + \varphi_{total}(y,z)]$$

Please, note the presence of the function [q(y,z)] !!! As well as the *total phase shift* $\varphi_{total}(y,z)$!!! Their meaning will be explained in the following slides.

$$\varphi_{total}(y,z) = \varphi_p(y,z) + \varphi_{derr}(y,z) + \varphi_{serr}(y,z)$$

In this expression for the *total phase shift* the meaning of the *individual contributions* is the following:

 $\varphi_p(y, z)$ stands for the **pure** phase shift caused by the **object itself** (this is the function **we are looking for** !!!)

 $\varphi_{derr}(y,z)$

stands for the **error** caused by the **diagnostic system** itself !!! (*interferometer setup* and the diagnostic beam **wave front quality** !!!)

$$\varphi_{serr}(y,z)$$

stands for the **systematic error** caused by the degree of **asymmetry** of the **diagnostic pulse f(t)** The q(y,z) function comes from the following time integration $q(y,z) = \int_{-\infty}^{+\infty} \exp[i\varphi'(y,z)t]f(t)dt$

In the case of the *symmetric* diagnostic beam profile *f(t)* this expression *simplifies* to the form

$$q(y,z) = \int_{-\infty}^{+\infty} \cos[\varphi'(y,z)t]f(t)dt$$

the q(y,z) function becomes the function with real values $0 < q(y,z) \le 1$

For typical symmetric diagnostic beam profiles f(t) this function is monotonically decreasing function of $\varphi'(y,z)$. This makes finding the inversion process possible, provided the exact time profile of f(t) is available – either analytically or numerically (by sampling the f(t) time profile). **Gaussian** pulse can be used as a **typical example** of the **symmetric** diagnostic beam with **analytical** profile **f(t)** to illustrate this topic (already normalized to unity):

$$f(t) = \frac{1}{\sqrt{\pi}\tau} \exp\left(-\frac{t^2}{\tau^2}\right)$$

After its substitution in the integral expression for the q(y,z) function it is possible to find the solution $\phi'(y,z)$ in the form

$$\varphi'(y,z) = \frac{2}{\tau} \sqrt{-\ln q(y,z)}$$

In the case of the symmetric diagnostic beam profile f(t) no systematic error $\varphi_{serr}(y,z)$ will be generated.

However, in more *practical* cases (with some degree of *asymmetry* of the diagnostic beam profile f(t)), it would be very convenient to be able to make an *estimate* of the value of this systematic error $\varphi_{serr}(y,z)$.

Such estimate is directly related to the fact that the $\varphi'(y,z)$ function can be reconstructed reasonably well even in the case of *f(t)* asymmetry. And the *imaginary* part of *q(y,z)* comes from the following integration:

$$q_i(y,z) = \int_{-\infty}^{+\infty} \sin[\varphi'(y,z)t] f_a(t) dt$$

Therefore

$$|q_i(y,z)| \ll q_r(y,z)$$

When it was taken into account that both **antisymmetric** functions $f_a(t)$ and $sin[\phi'(y,z)f]$ go through **zero** values at the time t = 0 (unlike $f_s(t)$ and $cos[\phi'(y,z)f]$).

Therefore, the following approach can be employed:

First of all the reconstructed values [q(y,z)] will be considered as a reasonable approximation for the **real** part $q_r(y,z)$. This will provide the way of reconstructing the $\phi'(y,z)$. Subsequently, the *imaginary* part $q_i(y,z)$ will be calculated as described in the previous slide.

Finally, the $\varphi_{serr}(y,z)$ can be determined

$$\varphi_{serr}(y, z) = \arcsin \frac{q_i(y, z)}{|q(y, z)|}$$

and subtracted from the reconstructed phase shift *ptotal*(y,z).

Using the formula $\cos x = (e^{ix} + e^{-ix}) / 2$ the expression for an *interferogram* takes the form

$$i(y,z) = b(y,z) + v(y,z) \exp[2\pi i(\omega_0 y + \upsilon_0 z)] + v^*(y,z) \exp[-2\pi i(\omega_0 y + \upsilon_0 z)]$$

where

$$b(y,z) = a_r^2(y,z) + a_s^2(y,z)$$

background

$$v(y,z) = a_r(y,z)a_s(y,z)|q(y,z)|\exp(i\varphi_{total})|$$

visibility

The functions b(y,z) and v(y,z) can be reconstructed from complex interferograms using **FFT** approach.

In order to be able to compensate for *typical errors* both in the *phase shift* as well as the *amplitude* reconstruction, the *reference interferograms* comes very handy.

In the generalizations published so far it was *silently assumed* that two interfering parts of the *diagnostic* beam would be *exactly* the *same*. More precisely, having exactly the same *(y,z) structure* in the *interference plane*.

This could be, in principle, achieved (after a very careful setup) for interferometers with an **amplitude** division (e.g., **Michelson**, **Mach-Zehnder**). In the case of the **phase front** division (e.g., **Nomarski**) it is not possible at all.

Therefore, a *new approach* needs to be *invented* for the purpose of the *most precise reconstructions* even in the case of a *not very high quality* of the *diagnostic beam*. *It can be done*. Provided the *stability* of the diagnostic beam between the *reference* and the *signal* shots is *sufficiently high*. As well as the *interferometer setup stability*.

AMPLITUDE EFFECT ANALYSIS

Let us denote the **signal** and the **reference** part of the **diagnostic** beam in the case of the **reference shot** (no signal) by the lower index 0. In that case the **effect of the object** on the **amplitude** of the **signal part** of the diagnostic beam -f(y,z) - can be expressed the following way:

$$a_s(y,z) = f(y,z)a_{s0}(y,z)$$

Denoting as **s(y,z)** the **ratio** between the **reference** and the **signal** part of the **diagnostic** beam recorded intensities (the **reference** shot)

$$s(y,z) = \frac{I_{r0}(y,z)}{I_{s0}(y,z)} = \frac{a_{r0}^2(y,z)}{a_{s0}^2(y,z)}$$

the following **general solution** can be found:

$$f(y,z) = \sqrt{\frac{1}{p} \frac{b(y,z)}{b_0(y,z)}} \left[1 + s(y,z)\right] - s(y,z)$$

This is the *most general solution* which will turn into the already published *less general solution* (case *s(y,z) = 1*):

$$f(y,z) = \sqrt{\frac{2}{p} \frac{b(y,z)}{b_0(y,z)}} - 1$$

Here also the parameter **p** was introduced as the **ratio** between the corresponding **energy** values of the **signal** and the **reference** shots (energies will vary in practice).

$$\varphi_{p}(y,z) = \arctan \frac{\operatorname{Im} \frac{v(y,z)}{v_{0}(y,z)}}{\operatorname{Re} \frac{v(y,z)}{v_{0}(y,z)}} - \varphi_{serr}(y,z)$$
$$\frac{1}{p} \left| \frac{v(y,z)}{v_{0}(y,z)} \right|$$
$$\frac{1}{\sqrt{\frac{1}{p}} \frac{b(y,z)}{b_{0}(y,z)}} [1 + s(y,z)] - s(y,z)}$$

COMPLETE SET OF ALL 4 DATA STRUCTURES

Complex Interferogram

> Diagnostic Beam Signal Part Intensity

Reference Interferogram

Diagnostic Beam Reference Part Intensity

ANALYSIS OF THE AMPLITUDE

Amplitude Reconstruction using all 4 Data Structures

Amplitude Reconstruction from Complex Interferogram only

Amplitude Reconstruction from Complex and Reference Interferogram

Original

Amplitude

AMPLITUDE RECONSTRUCTION OVERVIEW

Basic Principles of ABEL INVERSION

Abel Transform Formula

 $S(\mathbf{v}) = A[f(\mathbf{r})]$

formal denotation

Abel Inversion Formula

$$f(r) = -\frac{1}{\pi} \int_{r}^{R} \frac{dS(y)}{dy} \frac{dy}{\sqrt{y^2 - r^2}}$$

 $+\frac{S(R)}{\pi}(R^2-r^2)^{-1/2}$ (when S(R) > 0)

$$f(r) = \mathrm{A}^{-1}[S(y)]$$

formal denotation

EFFECT OF REFRACTION

Issues Connected to ABEL INVERSION

Using the *Abel inversion* a *zero approximation* to the *index of refraction spatial profile* is *reconstructed* from the *original phase shift*.

This *zero approximation* contains a *systematic error* due to *omitted effects* of *refraction* and needs to be *corrected*.

Both the **phase shift** and the **amplitude** are **reconstructed** from the **complex interferogram**.

For this purpose the *procedures* and *formulae* presented *earlier* should be used: employing the *reference interferogram* and separate *intensities* (if available).

In order to distinguish these *particular reconstructed quantities* from those which would gradually emerge during the *iterative process* they shall be addressed as

- the original phase shift
- the original amplitude

!!!!! Return entry point for the iteration process

Using the *ray-tracing* on the *current version* of the *index of refraction spatial profile* a *new phase shift* and *amplitude* are calculated.

These **newly** calculated **phase shift** and **amplitude** are **compared** with the **original** ones.

Found *differences* should lead to the following decisions:

Provided these *differences* are *below* a given
 limit the *iteration* process is *completed*.

– In case these differences are above a given limit they are employed for corrections to be applied to the index of refraction spatial profile and the iterative process continues by going back to the

Return entry point for the iteration process

The *algorithm* designed for these *corrections* is the *key element* of this *iterative* process *!!!*

CONCLUSIONS

Very good **stability** of the **interferometer** as well as the **diagnostic beam** are **required**. As in this case **4 shots** need to be taken (**signal**, **reference** and **2 intensity** structures).

If **good enough**, the **quality** of the **diagnostic beam** as well as the **interferometer setup** are **not important**.

Required information about the *s(y,z)* ratio can be easily obtained for interferometers with an *amplitude* division (*Michelson*, *Mach-Zehnder*) where the *signal* and the *reference* part of the *diagnostic* beam are traveling along *separated* trajectories (thus easy to be *stopped* letting only *one* part to reach the detector).

In the case of the *phase front* division (e.g., *Nomarski*) some care needs to be taken in order to achieve the same.

REFERENCES

Complex Interferometry

KALAL M., NUGENT K.A., LUTHER-DAVIES B.: *Phase-Amplitude Imaging: Its Application to Fully Automated Analysis of Magnetic Field Measurements in Laser-Produced Plasmas*, Applied Optics 26 (1987) 1674-167

KALAL M., NUGENT K.A., LUTHER-DAVIES B.: *Phase-Amplitude Imaging: The Fully Automated Analysis of Megagauss Magnetic Field Measurements in Laser-Produced Plasmas*, Journal of Applied Physics 64 (1988) 3845-3850

Complex Interferometry – Continued

KALAL M.: Complex Interferometry - Its Principles and Applications to Fully Automated On-line Diagnostics, Czechoslovak Journal of Physics 41 (1991) 743-748

KALAL M.: *Principles of Complex Interferometry*, **Optoelectronics for Environmental Sciences**, Ed. S. Martellucci, **Plenum Press, New York (1991) 267-273**

KALAL M.: *Processing of Complex Interferograms on Personal Computers*, SPIE 1980 - Iodine Lasers and Applications (1992) 125-130

KALAL M.: Analysis of Complex Interferograms on Personal Computers, SPIE 1983 - Optics as a Key to High Technology, Part II (1993) 686-687

Complex Interferometry – Continued

KALAL, M. - SLEZAK, O. - MARTINKOVA, M. - RHEE, Y.J.: *Compact Design of a Nomarski Interferometer and its Application in the Diagnostics of Coulomb Explosions of Deuterium Clusters*, Journal of the Korean Physical Society
56 (2010) 287-294

KALAL, M.: Complex Interferometry: How Far Can You Go?, Physics Procedia 62 (2015) 92 - 96

KALAL, M. – et al: Complex Interferometry Principles and its Potential in case of Reference Interferograms Availability, Proceedings of Science (ECPD2015) 014

KALAL, M.: Complex Interferometry Potential in case of Sufficiently Stable Diagnostic System, Journal of Instrumentation 11 (2016) C06002 (12 pages) – CI Bible !!!