
New Features 
 in  

COMPLEX  INTERFEROMETRY 
Diagnostics 

Milan Kalal1,2, Michal Krupka1,2, Jan Dostal2  
 

     

     1) FNSPE, Czech Technical University in Prague, Czech Republic 

     2) Institute of Plasma Physics AS CR, v.v.i., Prague, Czech Republic 

 

kalal@fjfi.cvut.cz 
 

34th ECLIM, Moscow, September 23, 2016 



HOW  COMPLEX  INTERFEROMETRY  

CAME  TO  ITS  EXISTENCE ? 

Through measurements of  

magnetic field profiles  

spontaneously generated  

in laser produced plasmas 





Spontaneous magnetic fields 

in laser produced plasma 



Nomarski type Interferometer 

with Fresnel Biprism 
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EXAMPLE  OF  THE  VERY  FIRST 

COMPLEX  INTERFEROGRAM  ANALYSIS 



The very first Complex Interferogram 
of spontaneously generated MG fields 
successfully recorded at PALS (2015) 

T. Pisarczyk, M. Kalal et al, Physics of Plasma 22, 102706 (2015) 
Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma 



KEY  REQUIREMENT 

OF  THE  DIAGNOSTIC  SYSTEM  

STABILITY  

!!!!! 
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While making interferometry, the final interferogram i(y,z) 

is a superposition of a series of instantaneous 

interferograms i(y,z,t) recorded trough the duration of the 

diagnostic beam pulse f(t) 

COMPLEX  INTERFEROGRAM  ANALYSIS 

Here ar(y,z,t) and as(y,z,t) are the instantaneous amplitudes 

of the reference and the signal beams, 0 and 0  are the 

spatial frequencies in the directions y and z (in the plane of 

interferogram), respectively,  

and (y,z,t) is the instantaneous phase shift between the 

reference and the signal beam.  







The shape of the diagnostic pulse f(t) can be defined 

(without any lose of generality) to satisfy the following criteria  
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Intensity cannot be negative 
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Time t=0 is selected to be in the center of its symmetric - 

fs(t) as well as antisymmetric - fa(t) part. 
 

As a result of that the following expressions will be true: 

Intensity can be normalized 
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Let us now suppose that, in principle, both the phase shift 

(y,z,t) and the amplitudes as(y,z,t) and ar(y,z,t) of the 

diagnostic beam can evolve in time due to temporal 

changes of characteristics of the object under investigation 

as well as of its own. 
 

Keeping this in mind it becomes useful to express these 

quantities in the form of the first order Taylor expansion 

with representative values (y,z), as(y,z) and ar(y,z) as well 

as the corresponding time derivatives taken at the time t=0 
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Performing the time integration (substituting the expansions) 

and considering only the most relevant terms we can get  

the modified form of the usual interferogram formula 

Please, note the presence of the function |q(y,z)| !!! 

As well as the total phase shift total(y,z) !!! 
 

Their meaning will be explained in the following slides. 



In this expression for the total phase shift the meaning 

of the individual contributions is the following: 

stands for the error caused  

by the diagnostic system itself !!! 

(interferometer setup and  

the diagnostic beam wave front quality !!!) 
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stands for the pure phase shift  

caused by the object itself 

(this is the function we are looking for !!!) 

( , )derr y z

( , )serr y z stands for the systematic error 

caused by the degree of asymmetry  

of the diagnostic pulse f(t) 
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The q(y,z) function comes from the following time integration 

For typical symmetric diagnostic beam profiles f(t) this  

function is monotonically decreasing function of ’(y,z). 

This makes finding the inversion process possible, provided  

the exact time profile of f(t) is available – either analytically  

or numerically (by sampling the f(t) time profile). 
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In the case of the symmetric diagnostic beam profile f(t)  

this expression simplifies to the form 

the q(y,z) function becomes the function with real values 
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Gaussian pulse can be used as a typical example of the 

symmetric diagnostic beam with analytical profile f(t) to 

illustrate this topic (already normalized to unity): 

After its substitution in the integral expression for the q(y,z) 

function it is possible to find the solution ’(y,z) in the form 



In the case of the symmetric diagnostic beam profile f(t) no 

systematic error serr(y,z) will be generated.  
 

However, in more practical cases (with some degree of 

asymmetry of the diagnostic beam profile f(t)), it would be 

very convenient to be able to make an estimate of the value 

of this systematic error serr(y,z). 
 

Such estimate is directly related to the fact that the ’(y,z) 

function can be reconstructed reasonably well even in the 

case of f(t) asymmetry. And the imaginary part of q(y,z) 

comes from the following integration: 
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First of all the reconstructed values |q(y,z)| will be considered  

as a reasonable approximation for the real part qr(y,z). 

This will provide the way of reconstructing the ’(y,z). 

Subsequently, the imaginary part qi(y,z) will be calculated 

as described in the previous slide. 
 

Finally, the serr(y,z) can be determined 

and subtracted from the reconstructed phase shift total(y,z). 

When it was taken into account that both antisymmetric  

functions fa(t) and sin[’(y,z)t] go through zero values 

at the time t = 0 (unlike fs(t) and cos[’(y,z)t]).  
 

Therefore, the following approach can be employed: 
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the expression for an interferogram takes the form 

where 

background 

visibility 

The functions b(y,z) and v(y,z) can be reconstructed  

from complex interferograms using FFT approach. 



In order to be able to compensate for typical errors both in 

the phase shift as well as the amplitude reconstruction, the 

reference interferograms comes very handy.  
 

In the generalizations published so far it was silently 

assumed that two interfering parts of the diagnostic beam 

would be exactly the same. More precisely, having exactly the 

same (y,z) structure in the interference plane. 
  

This could be, in principle, achieved (after a very careful 

setup) for interferometers with an amplitude division (e.g., 

Michelson, Mach-Zehnder). In the case of the phase front 

division (e.g., Nomarski) it is not possible at all. 
 

Therefore, a new approach needs to be invented for the 

purpose of the most precise reconstructions even in the 

case of a not very high quality of the diagnostic beam. 

It can be done. Provided the stability of the diagnostic beam 

between the reference and the signal shots is sufficiently 

high. As well as the interferometer setup stability.  



Let us denote the signal and the reference part of the 

diagnostic beam in the case of the reference shot (no 

signal) by the lower index 0. In that case the effect of the 

object on the amplitude of the signal part of the diagnostic 

beam – f(y,z) - can be expressed the following way:  
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Denoting as s(y,z) the ratio between the reference and the  

signal part of the diagnostic beam recorded intensities  

(the reference shot) 

AMPLITUDE  EFFECT  ANALYSIS 

the following general solution can be found: 
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This is the most general solution which will turn into the  

already published less general solution (case s(y,z) = 1): 

Here also the parameter p was introduced as the ratio  

between the corresponding energy values of the signal  

and the reference shots (energies will vary in practice). 
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COMPLETE  SET  OF  ALL  4  DATA  STRUCTURES 

Complex 

Interferogram 
Reference 

Interferogram 

Diagnostic 

Beam 

Signal 

Part 

Intensity 

Diagnostic 

Beam 

Reference 

Part 

Intensity 



ANALYSIS  OF  THE  AMPLITUDE 

Original 

Amplitude 

Amplitude 

Reconstruction 

from 

Complex  

Interferogram 

only 

Amplitude 

Reconstruction 

from 

Complex 

and 

Reference 

Interferogram 

Amplitude 

Reconstruction 

using 

all 4 Data 

Structures 



AMPLITUDE  RECONSTRUCTION 

OVERVIEW 



Basic Principles of ABEL INVERSION  

S y f x y dx f x y dx
X

X X

( ) ( , ) ( , ) 


z z2
0

r x y 2 2

dr

dx

x

x y

x

r





2 2

x r y 2 2

dx
rdr

x

rdr

r y
 

2 2

(for  x = 0  r = y) 

(for x = X  r = R) 

S y f r
rdr

r yy

R

( ) ( )


z2 2 2



S y f r( ) [ ]( )

S y f r
rdr

r yy

R

( ) ( )


z2 2 2

Abel Transform Formula 

formal denotation 
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formal denotation 



EFFECT  OF  REFRACTION 







Using the Abel inversion a zero approximation to 

the index of refraction spatial profile is 

reconstructed from the original phase shift.  

 

This zero approximation contains a systematic 

error due to omitted effects of refraction and 

needs to be corrected. 

Issues Connected 

to 

ABEL  INVERSION 



Both the phase shift and the amplitude are 

reconstructed from the complex interferogram. 
 

For this purpose the procedures and formulae 

presented earlier should be used:  

employing the reference interferogram 

and separate intensities (if available). 
 

In order to distinguish these particular 

reconstructed quantities from those which would 

gradually emerge during the iterative process  

they shall be addressed as  
 

- the original phase shift  

- the original amplitude 



!!!!! Return entry point for the iteration process 

 

 

Using the ray-tracing on the current version of the 

index of refraction spatial profile a new 

phase shift and amplitude are calculated. 

 

These newly calculated phase shift and amplitude 

are compared with the original ones. 



 

Found differences should lead to the following 

decisions: 
 

– Provided these differences are below a given 

limit the iteration process is completed. 
 

– In case these differences are above a given limit 

they are employed for corrections to be applied to 

the index of refraction spatial profile and the 

iterative process continues by going back to the   

 

Return entry point for the iteration process 
 

 

The algorithm designed for these corrections  

is the key element of this iterative process !!! 























Very good stability of the interferometer as well as the 

diagnostic beam are required. As in this case 4 shots need 

to be taken (signal, reference and 2 intensity structures).  
 

If good enough, the quality of the diagnostic beam as well 

as the interferometer setup are not important. 
 

Required information about the s(y,z) ratio can be easily 

obtained for interferometers with an amplitude division 

(Michelson, Mach-Zehnder) where the signal and the 

reference part of the diagnostic beam are traveling along 

separated trajectories (thus easy to be stopped letting only 

one part to reach the detector).  
 

In the case of the phase front division (e.g., Nomarski) some 

care needs to be taken in order to achieve the same. 
 

CONCLUSIONS 
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