Direct-drive target implosion at the deceleration phase in the presence of hydrodynamic instabilities

P.A. Kuchugov

G.A. Bagdasarov, A.S. Boldarev, N.N. Demchenko, V.A. Gasilov, S.Yu. Gus'kov, O.G. Olkhovskaya, V.B. Rozanov, R.V. Stepanov, R.A. Yakhin, N.V. Zmitrenko

> Keldysh Institute of Applied Mathematics of RAS P.N. Lebedev Physical Institute of RAS

34th European Conference on Laser Interaction with Matter (ECLIM-2016)

Moscow, Russia, 18-23 September 2016

- Initialisation of multi-dimensional calculations of thermonuclear target implosion
- Results of 3D modeling of the compression in presence of perturbations
- Energetic characteristics of the compression dynamic
- The influence of perturbation growth on the thermonuclear reactions rate
- Final remarks

Target design & system of irradiation

*Bel'kov S.A. et al., Thermonuclear targets for direct-drive ignition by a megajoule laser pulse, JETP, 121, 4, 686-698, 2015

Kuchugov, P. et al.

Kuchugov, P. et al.

Angle distributions of total absorbed laser energy:
a) under conditions of standard target irradiation by laser system,
b) in the case of target offset along 0x axis on 80 µm.

*Refer Thursday poster session for details - Demchenko N.N. et al., No.2

Based on the laser energy absorption map one can define dominant mode of the perturbation as l = 6-8

$$U_{r}^{3D} = U_{r}^{1D} (1 + \delta U_{r}), \quad \delta U_{r} = \sum_{l,m} a_{lm} Y_{lm} (\theta, \varphi)$$
$$a_{lm} = a_{max} / l^{2}, \quad a_{max} = 0.04 \text{ (a)}, \quad a_{max} = 0.12 \text{ (b)}$$

*Refer Wednesday oral session for detailed 2D calculations of target compression and burning based on distributions of absorbed laser energy - Yakhin R.A. et al., We19_0

Kuchugov, P. et al.

Target at peak compression – I-a

t = 1.2 ns (+10 ns)

Kuchugov, P. et al.

Dynamic of the compression – I-a

Kuchugov, P. et al.

Target at peak compression – II-a

t = 1.2 ns (+10 ns)

Kuchugov, P. et al.

Dynamic of the compression – II-a

Kuchugov, P. et al.

Target at peak compression – II-b

t = 1.2 ns (+10 ns)

Kuchugov, P. et al.

Dynamic of the compression – II-b

Kuchugov, P. et al.

The ratio of DT-fuel kinetic and internal energies and total DT energy for various 3D calculations

The part of DT-fuel kinetic energy per inward motion for various 3D calculations The part of DT-fuel kinetic energy per nonradial for various 3D calculations

*Gasilov V.A. et al., Program package MARPLE3D for simulation of pulsed magnetically driven plasma using high performance computing, Matem. Mod., 24, 1, 55-87, 2012

Kuchugov, P. et al.

- The presence of perturbations leads to poorer and longer conversion of DT-shell kinetic energy into internal energy of the hot spot that worsens conditions in the center of the target and as a consequence reduces the rate of the thermonuclear reactions
- The part of unconverted kinetic energy is contained in motion, mainly in radial direction and less in others, of spikes and bubbles induced by initial radial velocity perturbations
- Greater amplitude of the perturbations leads to bigger values of kinetic energy in non-radial directions at peak compression

Thank you for your attention!