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Why is heat load measurement and 

control such a serious topic?

3/374th MEPhI - Summer school, 13.-16.07.2020 Moscow by ZOOM, A. Herrmann



Limiter vs. Divertor

• Heat load exhaust as general problem in fusion devices

• 1990th change from limiter to divertor configurations.

• Disentangling plasma core (performance) and heat exhaust
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Larger devices – higher divertor heat load

32~ RBW ttmhd 

2~ RAVessel

Plasma stored energy increases 

stronger than with R3

Surface to be loaded with 

radiation:

Wetted area of the divertor:

xRADiv ~

Heating power increases with about

2~ RPHeat
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Δx - Extrapolation to ITER

MWP 100=

MW50
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wetted area: 1.4 m2, Δx = 3.6 cm

Wetted area in present experiments?

Thermography (AUG, JET)
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Increase of the wetted area – alternative 

magnetic configurations

• All configurations are in principle technically feasible (forces, shielding)

• The cost-to-benefit ratio has not been assessed so far!

Zohm 2015, Adapted from H. Reimerdes et al., 

1st IAEA TM on divertor concepts, 2015
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• Target heat loads are no concern for presently running fusion experiments.

• But are a serious concern for future larger fusion reactors.

– Higher heat load (MW/m2)

– Material degradation due to Neutrons

– Smaller temperature operation range for actively cooled targets
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Surface temperature limitations

• Sputtering and erosion during 
'normal' plasma wall 
interaction:

– Impurity concentration

– Life time

• Catastrophic increase of 
released material above a 
critical temperature:

– Strong life time reduction

– Damages

• The threshold temperature 
depends on the material.

Establish plasma operation resulting in  PFC temperatures below the threshold.

Federici et al., PPCF 45 (2003) 1523
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Interface limitations

• Stationary case: 10 MW/m2

• The sensitive component is inside the 

target …

• Safety issue:

– The surface temperature is 

measured.

– Correlation to the temperature inside 

the bulk.

– Thermal model

• Situation might be opposite for pulse like 

events (ELMs, Disruptions)

– Surface temperature limits will be 

exceeded.

W7-X target tile (cross section)

Actively cooled targets

10/374th MEPhI - Summer school, 13.-16.07.2020 Moscow by ZOOM, A. Herrmann



Tolerable heat load?

Relation between material and (plasma) heat deposition

steady state:

transient (short vs. transition time 

( a few seconds)):
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actuator: profile shape

actuator: profile shape

temporal evolution

See the talk by Aleksey Arakcheev
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Thermography at ASDEX Upgrade
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ASDEX Upgrade - vessel view
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Thermography @ ASDEX Upgrade
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How thermography is used?

MW28
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ASDEX Upgrade power loss channels Machine protection

Physics investigation
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Examples

Arcs Bremsstrahlung/Reflections

Dust
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Physics investigation - ELMs

• 1992 – Type-I ELMs measured with a 

fast IR line camera

– 256 pixel

– LN2 cooled

• Since then – thermography is a 

standard diagnostic at AUG
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From photons to heat load

Level 0

Raw data 

(photon flux)

Level 1

Surface 

temperature

Level 2

Heat flux

Level 3

Integrated data 

(P, E, qmax, λ, …)

System calibration

(Camera+optics)

Jitter correction

Thermal model 

of the target +

THEODOR

Geometry 

!

!
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(optical) temperature measurement

• How to measure surface temperatures?

• How to optimize the measurement according 

the task?

– Physics

– Machine protection

– Temperature range and sensitivity
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Planck’s law – correlation between photon flux 

(power flux) and temperature

• Planck’s law 

– Strong non-linear

– Unique relation between 

radiation/photon emission of a 

body and temperature.

– Depends on the wave length 

(broad band radiation).

• Select an optimum wavelength:

– Temperature range.

– Environment (vacuum, air).

– Available detectors (costs).

Planck’s formulae for radiation from a 

black body into the half space
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Wien's displacement law

Relation between λmax and T
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Planck's formulae - approximated
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Dynamic range and sensitivity can’t be 

selected independently

Representative wavelength:

• 0.8 µm – NIR (Near Infra Red)

• 4.7 µm – MWIR (Mid Wave IR)

• 10.0 µm – LWIR (Long Wave IR)

Strong non linear behaviour:

• The dynamic range/sensitivity can 

be changed 

• optically

• Filter (gray, wavelength)

• diaphragm (1/f)

• in the detection system

• integration time

• integration capacity

• detector characteristics

• Preferences for the wavelength 

selection 

• (higher λ for low temperature)

)(TMe

4 settings for the dynamic range
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Temperature error increases with wavelength 

and temperature
The measured signal consists of the temperature information and a background 

signal (fixed  and small wavelength window)
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Summary – Wavelength detection

• Typical wavelengths regions for T 

measurement:

– Vis/near infrared (vis/NIR, ~ 1 μm)

– Mid wave infrared (MWIR, ~ 5 μm)

– Long wave infrared (LWIR, ~ 10 μm)

• MWIR and LWIR cover temperature 

range from 500 to 3500 K.

• Vis/NIR covers a ‘small’ T-range.

• T measurement error:

• Strong error mitigation in the vis/NIR 

wavelength region:

– Comparator like behaviour.

– robustness against change of system 

parameters (emissivity).
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Properly designed thermography system

• Adapted to the measuring requirements 

• Calibrated

Are a prerequisite for heat load calculation.
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Heat load calculation

• No direct power measurement.

• Power is calculated from a 

temperature change
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• Heat conduction equation.
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From photon flux to heat flux
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Basic (text book) solutions

Semi infinite target Stationary, backside cooled Floating target

tq
c

tT ss =


12
)(

sbacks q
d

TT


=−

Transients
ELMs, disruptions

Depends on:

product of Heat capacity

and heat conductivity

Stationary

Actively cooled target

Depends on: 

Heat conductivity

tqcdT ss = 

Stationary

Thin layer with 

bad thermal contact

Depends on: 

heat capacity 
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Numerical - heat load calculation

• 2D heat flux equation (THEODOR)

• Numerical solved (FTCS, explicit)

O
u
te

r
• Thermal model with heat transfer 

edge condition on top and bottom.

• Bottom: clamped to the cooling 

structure

• Top: to consider surface effects 

(transients)
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Surface effects

• Same T(t) as input

• … but different thermal models

• One order of magnitude difference in 

the heat flux (transients).

• No difference in the calculation of 

the accumulated energy at the 

target!

• Thermal model and surface conditions

– Micro structures as pseudo layers

– Layers

• Wavelength selection

option 1 option 2
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• Overestimation of the bulk temperature due to:

– Surface morphology - Deposits/layers.

31

Surface effects – micro thermography

• During surface heating micro spots (a few 10μm) 

are detected at the surface.

• Detected for plasma exposed and unexposed 

materials.

• Pattern is constant over at least a few hundred 

load cycles.

• Layers in deposition areas 

are hotter compared to the 

bulk material.

• For the same heat flux!
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Hot spots result in an artificial temperature 

increase

• The measured temperature is 

calculated from the photons belonging 

to two (ore more) temperatures.

• The microscopic temperature patterns 

are fixed over many heating cycles.

R_T – temperature ratio hot spot/bulk

R_a – area ratio hot_spot/total area

EK 98 Tl Th

10 µm4.7 µm
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Layer effects


 +=

‘wrong surface properties’:

• Temperature jump results in a strong heat 

pulse (positive and negative).

• The integral signal gives the deposited energy.

• Correction of top layer effects on time scales 

longer then the pulse length (energy 

conservation)

ΔT = 20 K
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Thermal model

Bulk material: thermal data known
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(Nearly) no effect on the measured 

surface temperature

2.

The surface temperature is 

increased

The derived heat flux is too 

large if the surface effect is not 

considered.
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short. 
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Numerical:

After this time the time behaviour of the 

surface temperature follows the heating 

of the bulk.
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Surface effects

1)exp(

1
),(

2
5

1

−

=

T

c

c
TM e






( ) ( )hele TM
A

A
T*M

A

AA
M *+

−
=

0

1

0

10 )(
detector

35/374th MEPhI - Summer school, 13.-16.07.2020 Moscow by ZOOM, A. Herrmann



Bremsstrahlung

• Bremsstrahlung is emitted from a 

dense plasma in the SOL and 

divertor region.

• Strong decrease of Bremsstrahlung 

contribution between 1 and 5 μm

(1/λ2).

• Optimum wavelength – 5 μm

• Cold and dense plasmas contribute 

to Bremsstrahlung.

• Reduced target load due to divertor 

detachment.

T
brems

< 500 K

T
brems

>2500 K

Temperature equivalent for  Bremsstrahlung. 

A constant pressure of neTe = 1x1022 eVm-3 is assumed.
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Summary

• Heat dissipation is a serious task for the design of a fusion reactor and is a main 

topic in present research activities. 

• Thermography is a powerful tool for safety and physics investigations.

• Compared to infrared systems, video cameras have a smaller measurement range 

but are 5 -10 times more robust against changes of the optical system including 

emissivity and transmission.

• Heat flux = Temperature + thermal model

– Temperature measurements needs careful interpretation

– Transients are dominated by surface effects

– Long lasting events are dominated by the bulk (robust energy conservation)

• The non linearity of Planck’s law pronounces hot spots at low temperatures and 

low wavelengths).

• Heat load calculation is energy conserving

– As long as the thermal model for the bulk is correct, ‘wrong’ transient effects will 

be corrected
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