Обзор новых результатов термоядерных исследований в европе, достигнутых на пути к созданию ИТЭР и ДЕМО

XLIV Звенигородская Конференция Звенигород, Московская область, РФ 13 Февраля 2017 г.

Джеф ОНГЕНА и др. Лаборатория Физики Плазмы, Королевская Военная Академия, Брюссель, Бельгия

Благодарность: Yevgen Kazakov, Robert Wolf (W7-X), Juan Knaster (IFMIF)

Джеф Онгена и др.

44 Звенигородская конференция

Посвящается памяти Prof. Paul E.M. Vandenplas

Born: 08/12/1931 in Ixelles (Belgium) Deceased: 20/10/2016 in Woluwe-Saint-Lambert (Belgium)

Civil Engineer and Ph.D. in Physics

Professor Emeritus at Royal Military Academy and Université de Mons-Hainaut (Belgium)

Past mandates:

- Ex-director of the Association "Euratom-Belgian State" for Controlled Nuclear Fusion
- President of the Programme Committee of EURATOM Fusion
- Vice-president of the Advisory Committee for the EURATOM Fusion Program
- Board member of the Joint European Torus (JET)
- President of the Belgian National Committee for Pure and Applied Physics of the Royal Physical Society
- President of the Plasma Physics Division of the European Physical Society
- Foreign Member of the Ukrainian Higher Education Academy of Sciences

Prizes and distinctions:

- Triennial Prize, Alumni Association of the Ecole Polytechnique (RMA)
- Prize Georges Vanderlinden of the Belgian Royal Academy of Sciences
- Member of Academia Europaea
- Grand Officer of the Order of the Crown
- Grand Officer of the Order of Leopold II
- Officer of the Order of Leopold
- Knight
- Minerva Prize

Последние сведения об исследованиях в области УТС в мире

Nature Physics, Mei 2016

"Insight Section"

66 pages last minute info !!!

http://www.nature.com/nphys/journal/v12/n5/index.html

Джеф Онгена и др.

44 Звенигородская конференция

• JET – результаты, полученные в ходе последних компаний

- W7-X результаты, полученные в ходе первой экспериментальной компаний
- IFMIF все прототипные компоненты готовы
 - ожидание решения о начале строительства!

 $-\frac{1}{2}$ IFMIF = DONES – Бельгия ?

JET – прогресс на пути к D-T экспериментам и подготовке H-моды для ITER

ITER-подобная первая стенка в JET ITER Like Wall (Be,W) in JET

Джеф Онгена и др.

Impact of (Be,W) wall on ITER Q=10 performance

Хорошее удержание плазмы в режиме Н-моды с Ве-W стенкой

Combine High-Triangularity and corner pumping

- Stationary (5s) ITER Baseline Operation at high- δ (δ_{av} ~0.4) achieved at 2MA/2.2T
 - New high- δ configuration optimized for pumping

- H=1-1.1, q₉₅=3.2, β_N =1.8-2.1, P/P_{L-H}~2 but so far n/n_{GW}~ 0.5

Джеф Онгена и др.

Overview latest progress ITER Baseline Operation in JET

Джеф Онгена и др.

44 Звенигородская конференция

Безразмерный анализ в Baseline плазмах с низкой треугольностью

Джеф Онгена и др.

44 Звенигородская конференция

H-mode Density limit consistent with Goldston's prediction

[Goldston J of Nuc Materials 2015]

Джеф Онгена и др.

Прогнозы относительно будущих D-T экспериментов

Core transport modelling with TGLF predicts strong isotope effect Needs experimental validation in T-T and D-T experiments

Validation of TGLF in D-D

Джеф Онгена и др.

Predictions of TGLF for D-T

Содержяние – Ресультаты ЈЕТ

- JET results prepare the ITER active and non-active phase
 - Optimise the path towards ITER Q=10 operation
 - Show importance of edge physics
- JET ITER Like Wall operation and its physics understanding show the need for an integrated vision
 - Wall materials + Plasma Surface Interaction + SOL + Pedestal + Core physics are strongly coupled
 - No longer a simple scaling to extrapolate
 - More refined methods needed to extrapolate to ITER

Прогресс сталларатопа Wendelstein 7-X, Институт Макса Планка, Грайфсвальд, Германия

Джеф Онгена и др. 44 Звенигородская конференция

Wendelstein 7-X: Обзор

Plasma volume **30 m³** Magnetic field **2.5 T (up to 3 T)** Superconducting coils **70** Magnetic field energy **600 MJ** Cold mass **435 t** Total mass **735 t**

Джеф Онгена и др.

44 Звенигородская конференция

Wendelstein 7-Х: Операционные фазы

OP 2: 2020 ... Steady-state operation Actively cooled divertor configuration P_{cw} ~ 10 MW P_{pulse} ~ 20 MW (10 s) Technical limit **30 minutes** @ 10 MW

OP 1.2: 2017 / 2018 Uncooled divertor configuration P ~ 10 MW $\int P dt \le 80 MJ$ $\tau_{pulse} \sim 10 s at 8 MW$ (... 60 s @ reduced power)

OP 1.1: 2015 / 2016 Limiter configuration P < 5 MW -> 4.3 MW

∫ P dt ≤ 2 MJ -> 4MJ τ_{pulse} ~ 1 s -> 6 s

Джеф Онгена и др.

44 Звенигородская конференция

Wendelstein 7-X: Large international collaboration

- 402 out of 843 plasma experiments (discharges) with physics proposals
- 774 proposals conducted in the 402 physics programs

Джеф Онгена и др.

Wendelstein 7-Х: Первая экспериментальная кампания: достигнуты все заявленные цели

OP 1.1 priorities: Integral commissioning and first plasma operation

Confirmation of optimization goals of W7-X will be done in later operation phases

Джеф Онгена и др.

Wendelstein 7-Х: Создание плазмы

Plasma break-down within 10ms

 Hundreds of short ECRH cleaning discharges (3 days corresponding to about 4 sec plasma operation)

- \Rightarrow discharge length extended to ~50ms
- ⇒ With more pulses and glow discharge cleaning, eventually 6 seconds

Wendelstein 7-Х: Удержание

Optimized confinement time as predicted for W7-X ion-regime ($\chi_{e,1/v} \sim \epsilon_{eff}^{3/2}$)

Confinement times during 1st W7-X campaign

- Best plasmas lie on ISS04-scaling
- Only 16 days of hydrogen operation
- Conditioning of wall was still ongoing; impurity issues

Демонстрация О2-ЭЦР нагрева плазмы

- Proof-of-principle for highdensity operation with ECRH in future operation phases
- Plasma start-up in X2-mode
 - X2-cutoff at n_e=1.2*10²⁰ m⁻³
- For T_e ≥ 5 keV simultaneous X2- and O2-heating
- Finally, sustainment of plasma with only O2-heating
 - O2-cutoff is at 2.4*10²⁰ m⁻³

Wendelstein 7-Х: Системы нагрева плазмы

Wendelstein 7-Х: Системы нагрева плазмы

Method	OP 1.1	OP 1.2	OP 2
ECRH steady state 140 GHz 2.5 T	5 MW X2 LFS launch (front steering)	9 MW X2 / O2 LFS & HFS launch (front & remote steering)	9 MW X2 / O2 / OXB LFS & HFS launch (front & remote steering)
NBI pulsed 55 keV (H) 60 keV (D)		7 MW (H)	10 MW (D) 7 MW(H)
ICRH pulsed 25 – 38 MHz		2 MW ³ He, H minority	4 MW ³ He, H minority
		Upgrade of power supplies	

Система ICRH для W7-X проектируется бельгийско-немецкой группой (Брюссель-Юлих)

- Generation of fast ions ~ 100keV at high plasma density ~ $2 \times 10^{20} m^{-3}$
- TEXTOR RF generators in Greifswald (2 × 2MW)
- Using 3 ion heating scenario (first tests in C-Mod, oktober 2015) Reference: J.Ongena et al., Physics of Plasmas **21**, No. 6, (2014) 061514

Wendelstein 7-Х: план работы

OP1.2a: ~May-Dec 2017 OP1.2b: ~March-Sept 2018 OP 2: : ~Sept 2020 - ...

Джеф Онгена и др.

Экспериментальное подтверждение ICRH нагрева плазмы на основе сценария с тремя сортами ионов на JET

Джеф Онгена и др. 44 Звенигородская конференция

ICRH in H-(³He)-D JET experiments: H-D mixture + ³He < 1% $B_0 = 3.2T, I_p = 2MA,$ f = 32.5MHz, $n_{e0} \approx 4 \times 10^{19} \text{ m}^{-3}$

Schematic diagram of ICRH wave absorption

Traditional scheme for two ion plasma

Schematic diagram of ICRH wave absorption

Add 3rd ion with resonance in Mode Conversion layer → 3 ion scheme !

Schematic diagram of ICRH wave absorption

Н-(³Не)-D в JET Стабилизация пилообразных колебаний

Efficient plasma heating at ³He concentrations as low as ~0.2% successfully demonstrated

44 Звенигородская конференция

Джеф Онгена и др.

Использование +π/2 фазировки ВЧ антенны численные расчеты

Улучшение генерации быстрых ионов в центре плазмы

RF-induced pinch effect: inward displacement of the turning point for waves launched in the co-current direction

(L.-G. Eriksson et al. PRL (1998); M.J. Mantsinen et al., PRL (2002))

Джеф Онгена и др.

44 Звенигородская конференция

Использование +π/2 фазировки ВЧ антенны: экспериментальные результаты

Визуализация популяции быстрых ионов в плазме с помощью томографической реконструкции гамма-излучения

Same main plasma parameters

* #90752 (left) and #90753 (right): H/(H+D) = 0.84 \rightarrow 0.75, X[³He] \approx 0.2–0.3%, P_{RF} = 4.2MW

44 Звенигородская конференция

Джеф Онгена и др.

Наблюдение высокоэнергетичных ионов ³Не с помощью анализа гамма-излучения

Низкая концентрация ионов ³Не → увеличивается ВЧ мощность, поглощаемая отдельным резонасным ионом ³Не

Томографическая реконструкция гамма-излучения: локализация высокоэнергетичных ионов ³Не в центре плазмы

Multiple gamma-lines with $E_{\gamma} > 4.44$ MeV (excitation requires ~2MeV ³He ions)

Возбуждение ТАЕ (тороидальные альфвеновские моды): независимое подтверждение генерации ионов с МэВ-энергиями

#90758: P_{RF} = 4.4MW, + $\pi/2$ phasing, H/(H+D)~0.90, 0.2–0.4% of ³He

- > Toroidal Alfvén eigenmodes (TAEs) excited when part of RF power in $+\pi/2$ phasing
- \succ ³He energy estimate: $E[{}^{3}\text{He}](\text{MeV}) \simeq 0.047 f_{\text{TAE}}(\text{kHz})/n_{\text{TAE}} \approx 2 3 \text{ MeV}$

Джеф Онгена и др.

> Excitation of TAEs with lower mode numbers n_{TAE} correlates with an increase in 4.44MeV gamma emission rate

Progress with the IFMIF Project EVEDA Phase

(Engineering Validation and Engineering Design Activity)

- ИТЭР: < 2 смещений на атом (dpa) к концу программы
- Термоядерная электростанция: ~ 150 dpa (в течение 5 лет)

• Трансмутация железа → протоны и альфа-частицы
 ⁵⁶Fe(n, α)⁴³Cr (пороговая энергия нейтронов 2.9 МэВ)
 ⁵⁶Fe(n, p)⁵⁶Mn (пороговая энергия нейтронов 0.9 МэВ)

Разбухание и охрупчивание материалов в термоядерном реакторе

Исследования и разработки в области радиационного материаловедения

Существующие источники нейтронов не могут дать ответы на все вопросы

- 1. Ядерные реакторы
 - → средняя энергия нейтронов ~ 2 МэВ
 - -> генерация протонов и альфа-частиц не эффективна
- 2. Источники расщепления ядер (spallation sources) широкий спектр по энергии
 - → энергия нейтронов слишком велика
- 3. Установки для ионной имплантации (ion implantation facilities)
 - → малый объем и недостаточное смещение на атом (dpa)

Требуется создание специализированной установки (IFMIF)

IFMIF: принцип

- Accelerator driven source of neutrons
- Neutrons from ^{nat}Li(d,xn) reactions

⁷Li(d,n)⁸Be, ⁶Li(d,n)⁷Be, ⁷Li(d,nαα),
⁷Li(d,np)⁷Li, ⁷Li(d,nn)⁷Be, ⁷Li(d,nd)⁶Li,...

- 2 accelerators 40MeV, 125mA, D⁺ ions \rightarrow 2 x 5MW
- 10¹⁸ neutrons/m²/s with peak at 14 MeV
- Target heat load: 1GW/m² → liquid target needed 15m/s, 250 °C, total 10m³ of liquid Li
- Function of liquid Li target:
 - → generate sufficiently high neutron flux
 - → dissipate 10 MW beam power

IFMIF: принцип

Original IFMIF : 2 accelerators of 40MeV deuterons

44 Звенигородская конференция

Джеф Онгена и др.

IFMIF: обзор

Prototype evaluations succesful during Broader Approach (EU-Japan)

Belgium

44 Звенигородская конференция

Джеф Онгена и др.

Do we need full version (2 accelerator) IFMIF ?

DONES in Europe

A-FNS in Japan

Candidates in EU for DONES: Croatia, Poland, Spain, Belgium? DONES = DEMO Oriented Neutron Energy Source A-FNS = Advanced Fusion Neutron Source

Джеф Онгена и др.

44 Звенигородская конференция

Fusion Materials Irradiation Facilities

DONES (DEMO Oriented Neutron Energy Source) 125 mA at 40 MeV

IBARRA, A., et al., A stepped Approach from IFMIF/EVEDA toward IFMIF, Fus. Sci. Tech. Vol. 66 July/Aug 2014

HEIDINGER, R. et al., *Technical analysis of an early fusion neutron source based on the enhancement of the IFMIF/EVEDA accelerator prototype,* **Fus. Eng. Des. 89 (2014) 2136–2140**

Now essentially waiting for a decision to construct DONES

Within 8 years from decision we could have 14 MeV neutrons

Джеф Онгена и др.

44 Звенигородская конференция

Большие перспективы и поле для деятельности для молодых ученых

- JET (now) работа с ИТЭР-подобной стенкой
- Wendelstein 7-X (now) самый крупный стелларатор в мире
- ITER (2025?) самый крупный токамак в мире
- T-15 and WEST (в ближайшее время) в стадии сооружения
- DONES (2024?) исследования в области радиационного материаловедения

Спасибо за внимане !

Джеф Онгена и др. 44 Звенигородская конференция