

Область рабочих параметров токамака МИФИСТ:

предварительная оценка

Кирнева Н.А.^{1,2}, Воробьев Г.М.², Ганин С.А.², Дрозд А.С.², Кудашев И.С.², Кулагин В.В.², Курнаев В.А.²

¹ Национальный исследовательский центр «Курчатовский институт», пл. Академика Курчатова, д.1., 123182, Москва, Россия ² Национальный исследовательский ядерный университет МИФИ, Каширское шоссе, д.31, 115409, Москва, Россия

Статья для журнала «ВАНТ. Сер. Термоядерный синтез»

- Введение
- Определение операционных пределов токамака МИФИСТ (докладчик Кудашев И.С.)
- Предварительное моделирование разрядов в токамаке МИФИСТ-0 (докладчик Кирнева Н.А.)
 - ✓ Цели моделирования
 - ✓ Используемая модель
 - ✓ Расчеты для установки МИФИСТ-0
- Возможные режимы удержания в токамаке МИФИСТ
- Заключение

Операционные пределы токамака МИФИСТ

ПОДГОТОВИЛ СТУДЕНТ ГРУППЫ М19-208 КУДАШЕВ ИВАН

Введение

По существующим скейлингам и эмпирическим законам возможно определить область рабочих значений тока и плотности плазмы токамака

С помощью этого можно сравнить физические и технические возможности установки

Также можно провести первые, оценочные моделирования разрядов

Помимо этого, становится возможным сравнение с другими установками

Характеристики токамака МИФИСТ

	R ₀ , см	а, см	Α	k	δ	Β _τ , Τ
МИФИСТ-0	25	13	1,9	2	0,30,5	0,24-0,5
МИФИСТ-1	25	13	1,9	2,5; 3	0,30,5	до 3

[1] Курнаев В.А. и др. Вестник НИЯУ МИФИ 8 (2019) 491

Ограничения по току

Границы по току определялись по значениям q (запас устойчивости) на границе плазменного шнура:

Масксимальный ток соответствовал q=2

• Минимальный (нестрогое условие) q=15

$$q = \frac{5a^2 B_T}{I_p R_0} \cdot f_1(\kappa, \delta) \cdot f_2(A)$$
$$f_1(\kappa, \delta) = \frac{1 + k^2 (1 + 2\delta^2 - 1, 2\delta^3)}{2} \qquad f_2(A) = \frac{1, 17 - 0, 65/A}{(1 - A^{-2})^2} \qquad A = \frac{R/A}{4}$$

где а — малый радиус плазменного шнура [м], — тороидальное магнитное поле [T], — ток плазмы [MA], R₀ — большой радиус тора [м], k— вытянутость плазмы, δ— треугольность плазмы.

4

Ограничения на плотность плазмы

Область малых плотностей ограничивается пределом по развитию пучков убегающих электронов (предел Разумовой):

$$n_{e,rum} = 0,07 \frac{I_p}{\pi k a^2}$$

Максимальная плотность определялась по минимальному значению из двух пределов: предела Гринвальда и Мураками

$$n_{e,Gw} = \frac{I_p}{\pi a^2} \qquad \qquad n_{e,max} = \frac{B_T}{R}$$

5

Диаграммы Хьюгилла для токамаков МИФИСТ-0 и МИФИСТ-1

Из формулы запаса устойчивости следует, что фактор f₁ меняется от 2,8 при *k*=2, *δ*=0,3 до 6,5 (*k*=3, *δ*=0,5), f₂=1,56, следовательно, предельно допустимый (по физическим ограничениям) ток плазмы возрастает более, чем в 4 раза

Однако в реальности сила тока будет ограничена техническими возможностями системы создания тока: corлacнo[1] для на начальном этапе предельный ток 0,1 MA, затем он может быть увеличен до 0,3-0,4 MA

[1] Курнаев В.А. и др. Вестник НИЯУ МИФИ 8 (2019) 491

Влияние магнитного поля и геометрических факторов

Изменение магнитного поля (при фиксированных k и δ) приводит к более сильному смещению рабочих параметров по сравнению с изменением треугольности и вытянутости при фиксированном значении B_т

Ограничения по плотности

Предел Мураками прямо пропорционален величине *B_T*, следовательно, увеличение *B_T* приводит к существенному увеличению допустимой плотности плазмы

Однако при относительно малых технически допустимых токах плазмы максимальное значение плотности ограничивается пределом Гринвальда

Также достижение высоких плотностей является интересной задачей:

- при заполнении плазмы с помощью газонапуска, увеличение плотности требует высоких потоков рабочего газа на периферии, что будет приводить к охлаждению периферийной плазмы, что в свою очередь может инициировать развитие МГД-неустойчивостей. Важную роль будут играть рециклинг и взаимодействие
- заполнение плазмы с помощью напуска газа со стороны слабого поля при высоких плотностях может оказаться неэффективным [1]. Продвижение по плотности потребует либо напуска газа со стороны сильного поля, либо использования альтернативных методов напуска газа, например, инжекции сверхзвуковой струи [1].

[1] Gusev V.K., Alladio F., Morris A.W. Plasma Phys. Control. Fusion 45 (2003) A59

Заключение

По результатам оценок области операционных параметров можно сделать вывод, что рабочие параметры ограничены не столько физическими причинами, сколько техническими

Данное заключение, дает повод продвигаться в сторону улучшения технических возможностей токамака МИФИСТ

Выводы статьи по этому разделу

1. Представлены оценки операционных пределов по току и плотности плазмы для сферического токамака МИФИСТ (для модификаций МИФИСТ-0 и МИФИСТ-1).

 Показано, что теоретически возможные значения тока плазмы существенно превосходят величины, ограниченные системой электропитания и параметрами индуктора.

При техническом ограничении $I_p \sim 0,1$ МА МИФИСТ-0 будет работать при $q_a > 3,5$. При $I_p \sim 0,3$ МА рабочая область установки МИФИСТ-1 соответствует $q_a > 7$.

3. Показано, что ожидаемые величины предельной плотности для рабочих значений токов плазмы оказываются довольно высокими, n > 10²⁰м⁻³. Продвижение в эту область может потребовать решения физических и технологических задач, связанных с выбором оптимального алгоритма подготовки стенки камеры к рабочему режиму, выбору способа заполнения плазмы, выбору материала первой стенки.

Электронный теплоперенос

$$\begin{split} &\frac{3}{2}\frac{\partial}{\partial t}\left(n_{e}T_{e}\right) = -\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\Gamma_{e}\right) + q_{OH} - q_{ei} + q_{e}^{ion} \\ &\Gamma_{e} = \Gamma_{e}^{conv} + \Gamma_{e}^{an} + \Gamma_{e}^{PC} \\ &\Gamma_{e}^{conv} = \frac{5}{2}T_{e}\Gamma_{n} \\ &\Gamma_{e}^{an} = n_{e}\chi_{e}^{an}\frac{\partial T_{e}}{\partial\rho}, \text{ rge } \chi_{e}^{an} = \alpha_{e}^{an}\frac{\sqrt{T_{e,a/2}}}{n_{e,a/2}R_{0}} \\ &\Gamma_{e}^{PC} = n_{e}\chi_{e}^{PC}\frac{\partial T_{e}}{\partial\rho} - n_{e}v_{p}^{PC}T_{e}, \text{ rge} \\ &\chi_{e}^{PC} = \alpha_{e}^{PC} \cdot q_{a} \cdot \left(\frac{a}{R}\right) \cdot q_{a/2} \cdot \sqrt{T_{e,a/4}} \cdot \frac{\overline{n_{e}}}{B_{T}n_{e}} \\ &V_{p}^{PC} = \frac{2}{3}\gamma_{PC} \cdot \frac{2\rho/a}{1+\rho^{2}}\chi_{e}^{PC} \end{split}$$

Ионный теплоперенос

$$\frac{3}{2} \frac{\partial}{\partial t} (n_i T_i) = -\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \Gamma_i) + q_{ei} + q_i^{ion} + q_{cx}$$
$$\Gamma_i = \Gamma_i^{conv} + \Gamma_i^{neo}$$
$$\Gamma_i^{conv} = \frac{5}{2} T_i \Gamma_n$$
$$\Gamma_i^{neo} = n_i \chi_i^{neo} \frac{\partial T_i}{\partial \rho}$$

Уравнение переноса частиц решалось с условием Γ_n : $\overline{n}_e = const$

Уравнение диффузии тока в следующих предположениях:

- неоклассическая проводимость
- ПК по модели Б.Б.Кадомцева
- бутстреп-ток

	І _р , кА	В _т , Тл	k	δ	$\overline{n}_{_{e}}$, 10 20 m $^{-3}$
1.	70	0,24	2	0,3	0,3
2.	75			0,4	0,35
3.	80			0,5	0,38
4.	150	0,5	2	0,3	0,7
5.	160			0,4	0,75
6.	170			0,5	0,8
7.	100			0,4	0,45
8.	150	0,5	2	0,3	0,3
9.	160			0,4	0,3
10.	170			0,5	0,3
11.	100			0,4	0,315

16

- Широкая область низкого шира в центре
- Высокий магнитный шир во внешней трети шнура
- Широкая область q=1 амплитуда ПК???
- ρ(q=2)~0.8 при q_a~6, ρ(q=2)~0.7 при q_a~9

Расчетные значения β_p и мощности омического нагрева плазмы для параметров установки МИФИСТ-0 в режимах с разной треугольностью плазмы (q_a~6 и $\overline{n}_e \cong 3 \cdot 10^{19} \,\mathrm{m}^{-3}$).

 τ_{E} ~1 мс согласуется с нео-Аалкаторным скейлингом при $\overline{n}_{e} \cong 3 \cdot 10^{19}$ м⁻³

$$\tau_E^{neo-Alc} \sim 1, 2-1, 4 \text{ Mc}$$
 $\tau_E^{neo-Alc} = 0,07 \cdot \overline{n}_e \cdot q_a \cdot k^{0.5} \cdot R_0 \cdot a_{19}$

Возможные режимы удержания в токамаке МИФИСТ

1. Скейлинг ИТЭР

$$P_{th}^{L-H} = 0,042 \cdot \overline{n}_{e}^{0,73} \cdot B_{T}^{0,74} \cdot S^{0,98}$$

2. Скейлинг сферических токамаков (MAST, NSTX)

$$\begin{split} P_{th}^{L-H} &= 0,072 \cdot \overline{n}_{e}^{0,7} \cdot B_{T}^{0,7} \cdot S^{0,9} \left(\frac{z_{eff}}{2}\right)^{0,7} \cdot F(A) \quad , \text{где} \\ F(A) &= \sqrt{\frac{0,1 \cdot A}{1 - \sqrt{\frac{2}{1 + A}}}}; \quad A = R \,/\, a \end{split}$$

3. Скейлинг , учитывающий состав рабочего газа $P_{th}^{L-H} = 0,082 \cdot \overline{n}_e^{0.69} \cdot B_T^{0.91} \cdot S^{0.96} \cdot M^{-1}$

Оценки пороговой мощности L-Н перехода

Конфигура- ция	k	δ	Β _τ , Τ	I _р , кА	Z _{eff}	\overline{n}_e^{min} , 10 ²⁰ m ⁻³
МИФИСТ-0	2	0,4	0,24	75	2; 3	0,1
	2		0,5	160	2; 3	0,2
МИФИСТ-1	2,5	0,4	1	460	2; 3	0,49

$$\overline{n}_{e}^{min} = 0,07 \cdot I_{p}^{0,34} \cdot a^{-0,95} \cdot B_{T}^{0,62} \cdot \left(\frac{R}{a}\right)^{0,4}$$

Ryter F., et al Nucl. Fusion **53**(2013) 113003

21

Оценки пороговой мощности L-Н перехода

Зависимость пороговой мощности L-H перехода для токамака МИФИСТ-0: (а) для B_{τ} =0,24 Тл; (б) для B_{τ} =0,5 Тл.

Кривые 1 соответствуют расчетам по скейлингу ИТЭР,

кривые 2 - скейлингу для сферических токамаков : 2а для *z_{eff}=*2, 2б для *z_{eff}=*3; кривые 3 соответствуют расчетам по скейлингу ITER, учитывающему влияние состава рабочего газа: кривая 3а для водорода, кривая 3б для дейтерия.

Оценки пороговой мощности L-Н перехода

Зависимость пороговой мощности L-H перехода для токамака МИФИСТ-1 для B_T=1 Тл. Кривые 1 соответствуют расчетам по скейлингу ИТЭР, кривые 2 - скейлингу для сферических токамаков : 2а для z_{eff}=2, 2б для z_{eff}=3.

Выводы (моделирование)

Проведено моделирование стационарной стадии разрядов токамака МИФИСТ-0 для различных значений В_т и треугольности плазмы. Показано, что ожидаемый профиль $q(\rho)$ соответствует типичному распределению тока для сферических токамаков: широкая область низкого магнитного шира в центральной части плазмы и высокий магнитный шир во внешней трети плазменного шнура. Для режимов с относительно низкими q_a , $q_a < 6$, это приводит к тому, что поверхность q=2 находится близко к границе плазмы ($\rho^{\sim}0,8$), что может инициировать развитие МГД неустойчивостей особенно в условиях высоких потоков нейтральных частиц со стенки.

Выводы (моделирование)

 Ожидаемые величины мощности омического нагрева плазмы, *Р*_{ОН}, полученные при моделировании разрядов токамака МИФИСТ-0, оказались достаточно высокими по сравнению с величиной пороговой мощности L-Н перехода. Это означает, что уже в омических режимах токамака МИФИСТ-0 могут проявиться характерные особенности L-Н перехода. Однако, для осуществления L-Н перехода в токамаке МИФИСТ-1 потребуется дополнительный нагрев плазмы.

Таким образом, проведенный анализ рабочей области токамака МИФИСТ показывает широкие возможности установки для участия в решении актуальных задач физики токамаков.

Отечественные токамаки (2020 г.)

	R ₀ , см	а, см	А	k	δ	В _т , Тл
МИФИСТ-0	25	13	1,9	2	0,30,5	0,24-0,5
МИФИСТ-1	25	13	1,9	2,5; 3	0,30,5	до 3
Глобус-М2	36	24	1,5	2,2	0,45	1,0
ΦT-2	55	8	6,9	1	0	2,2
Туман-3М	53	22	2,4	1	0	1,2
T-11M	70	20	3,5	1	0	1
Т-15МД	150	67	2,2	до 1,8	до 0,45	2

Сферические токамаки

	R ₀ , см	а, см	А	k	δ	В _т , Тл
МИФИСТ-0	25	13	1,9	2	0,30,5	0,24-0,5
МИФИСТ-1	25	13	1,9	2,5; 3	0,30,5	до 3
Глобус-М2	36	24	1,5	2,2	0,45	1,0
MAST Upgrade	85	65	1,3	2,5	0,45	0,92
NSTX-U	93	62	1,5	2,8	до 0,7	1,0
ST-40	40	24	1,7	2,5	0,3	3,0