

Спектроскопические методы определения плотности молекул воды в плазме

А.В. Бернацкий

01.03.2017

10⁻⁷ Па•м³•с⁻¹=10⁻⁹ мбар•м³•с⁻¹=10⁻⁶ мбар•л•с⁻¹=10⁻⁷ Вт или ~**10**¹³ молекул/с

2001 год: ITER Final Design Report No. G 31 DDD 14 01.07.19 W 0.1, Section 3.1: Vacuum Pumping and Fuelling Stems.

2012 год:

•Работа с МИФИ в рамках сервис-контракта с ИТЭР

•Создание установки «Течь» в ОНТП ФИАН

•Предложено использовать спектр ОН (306-320 нм) для диагностики течей воды

•Проведены калибровочные измерения

•Достигнута чувствительность на уровне $10^{-5} \Pi a \cdot M^3 \cdot c^{-1}$

А.Б. Антипенков, О.Н. Афонин, В.Н. Очкин, С.Ю. Савинов, С.Н. Цхай. Экспериментальная проверка метода обнаружения микротечей воды в плазменно-вакуумной камере по спектру гидроксила // Физика плазмы. 2012, т. 38, № 3, с. 221-225. DOI: 10.1134/S1063780X12020018

Схема установки «Течь»

GO – откачка камеры GI – фланец напуска буферного газа (Не) **GH** – баллон с Не LC – натекатель Swagelock SS-4L **ALM1** – колба с H₂O LC1 – натекатель НРП-16 ALM2 – баллон с Хе LC2 – натекатель Swagelok SS-4MG PS1 – датчик давления Balzers IKR250 (10-2-10-9 мбар) PS2 – датчик давления Pfeiffer TPR280 (10-4-103 мбар) GPC – блок управления датчиками давления Balzers TPG252A HV – фланец ввода напряжения на разрядную систему РD – фланец ввода зонда **TDS** – осциллограф TDS3032C VC – фланец с кварцевым окном для визуальных наблюдений **О**W – фланец с кварцевым окном для вывода излучения в спектральную систему IL – входная линза спектральной системы

Возбуждение излучающего состояния $OH(A^2\Sigma)$

Интенсивность *I* линий "горячих" молекул для перехода OH(A²Σ-X²Π):

$$I^{hot} = A \cdot N_{OH}^{hot} = n_e \cdot \langle v_e \cdot \sigma \rangle \cdot N_{H2O}$$

где A – коэффициент Эйнштейна, N и n_e – концентрации тяжелых частиц и электронов, v_e – скорости электронов, σ – сечение диссоциативного возбуждения.

$$N_{H2O} = N^{ph} \cdot (n_e \cdot \langle v_e \cdot \sigma \rangle)^{-1}$$

где I_K , I_{K2} – интенсивности линий; S_K , S_{K^*} – факторы Хенля-Лондона; h – постоянная Планка; c – скорость света; k – постоянная Больцмана; F(K), $F(K^*)$ – энергия вращательного терма.

Тип установки, год публикации	Чувстви- тельность, Па·м ³ ·с ⁻¹	Способ детектирования	Примечание		
Камера "Течь" 2012	10-5	Интегральная	Полый катод, локализация 1 см ³ , быстродействие 10 с. Использовались калибровочные смеси		
Степларатор		гидроксила	Использовался калиброванный химический натекатель паров воды		
Л-2M 2012, 2013	10-4	Интенсивности линий ксенона	Экстраполяция результатов измерений натекания Хе (чувствительность по потоку Хе –10 ⁻⁶ Па·м ³ ·с ⁻¹). Локализация – 5 мм. Предполагается содержание Хе в воде на уровне 1%		
Tore Supra, лаборатория CEA-IRFM 2013	10-2	Лазерная	Прямые измерения по поглощению света молекулами воды		
	10-5	абсорбционная	Предельная экстраполяция прямых измерений		
	10-6	спектроскопия	Планируемый уровень после модификации измерительной схемы		
Разрядная камера ПР-2 2014	10-4	Возникновение автоколебаний разряда при оксидации катода примесями	Эффект заметен при скорости натекания молекул воды 10 ¹⁶ с ⁻¹ . Добавки воды по калиброванному химическому натекателю		
Камера "Течь" 2015	10-7	Абсолютные интен	сивности "горячих" линий ОН совместно с зондовыми измерениями.		

А.В. Бернацкий, В.Н. Очкин, О.Н. Афонин, А.Б. Антипенков. Измерение концентраций молекул воды в плазме с помощью комбинации спектральных и зондовых методов // Физика плазмы. 2015, т. 41, № 9, с. 767-777. DOI: 10.7868/S0367292115090036

Метод оптической актинометрии.

$$N_X = N_A \cdot \frac{I_X}{I_A} \cdot \frac{C_A}{C_X} \cdot \frac{\lambda_X}{\lambda_A} \cdot \frac{k_A}{k_X} \cdot \frac{A_A}{A_X} \cdot \frac{Q_X + A_X}{Q_A + A_A}$$

где I – интенсивности свечения; N – концентрация частиц; C – коэффициент, определяемый телесными углами собираемого излучения, пропусканием оптики, спектральной чувствительностью детектирования; λ – длина волны излучения; A – коэффициент Эйнштейна спонтанного излучения; Q – частота безызлучательного распада вследствие столкновений (тушение); k – коэффициент скорости возбуждения спектральных линий электронным ударом

$$\begin{cases} k = n_e \cdot \int \sigma(\varepsilon) \cdot f(\varepsilon) \cdot \sqrt{\varepsilon} \cdot d\varepsilon \\ \int f(\varepsilon) \cdot d\varepsilon = 1 \end{cases}$$

 $\sigma(\varepsilon)$ – сечение возбуждения, $f(\varepsilon)$ – функция распределения электронов по энергии ε (ФРЭЭ).

I – H₂O (306-320 nm); *2* – Xe (823 nm); *3a* – O (777 nm); *3b* – O (844 nm); *4* – H (656 nm); *5* – Ar (751 nm); *6* – измеренная ФРЭЭ.

1 – H₂O-Xe; *2* – H₂O-Ar; *3* – O-Xe; *4* – O-Ar; *5* – H-Xe; *6* – H-Ar

А.В. Бернацкий, В.Н. Очкин, Р.Н. Бафоев. Влияние распределения электронов по энергиям на измерение концентраций атомов методом оптической актинометрии // Краткие сообщения по физике ФИАН. 2016, т. 43, № 6, с. 18-23. DOI: 10.3103/S1068335616060038

	Первое приближение								Второе приближение	
Частица	H ₂ O	0	Η	OH	He	Xe	Ar	H ₂	O ₂	
i, j	1	2	3	4	5	6	7	8	9	
Роль частицы	X	X	X	X	В	A	A	Р	Р	

$$\begin{cases} N_{1,6} = N_6 \cdot G_{16} \cdot R_{61}^{hot} \cdot I_{46}^{hot} \cdot \frac{Q_4 + A_4}{Q_6 + A_6} & \frac{C_A}{C_X} \cdot \frac{v_A}{v_X} \cdot \frac{A_A}{A_X} = G_{AX} & \frac{I_A}{I_X} = I_{XA} & \frac{k_A}{k_X} = R_{AX} \\ N_{1,7} = N_7 \cdot G_{17} \cdot R_{71}^{hot} \cdot I_{47}^{hot} \cdot \frac{Q_4 + A_4}{Q_7 + A_7} \\ N_{2,6} = N_6 \cdot G_{26} \cdot R_{62} \cdot I_{26} \cdot \frac{Q_2 + A_2}{Q_6 + A_6} \\ N_{2,7} = N_7 \cdot G_{27} \cdot R_{72} \cdot I_{27} \cdot \frac{Q_2 + A_2}{Q_6 + A_6} \\ N_{3,6} = N_6 \cdot G_{36} \cdot R_{63} \cdot I_{36} \cdot \frac{Q_3 + A_3}{Q_6 + A_6} \\ N_{3,7} = N_7 \cdot G_{37} \cdot R_{73} \cdot I_{37} \cdot \frac{Q_3 + A_3}{Q_6 + A_6} \\ N_{4,6} = N_6 \cdot G_{16} \cdot R_{61}^{cold} \cdot I_{16}^{cold} \cdot \frac{Q_4 + A_4}{Q_6 + A_6} \end{cases}$$

A.V. Bernatskiy, V.N. Ochkin, I.V. Kochetov. Multispectral actinometry of water and water derivate molecules in moist inert gas discharge plasmas // Journal of Physics D: Applied Physics. 2016, V. 49, No. 39, 395204 (10pp). DOI: 10.1088/0022-3727/49/39/395204

		Константа скорости	k(T) при T=430 K				
N₂	Реакция	реакции <i>k(T)</i> ,	104 1 - 450 K,				
		с ⁻¹ , см ³ ·с ⁻¹ , см ⁶ ·с ⁻¹	C-, CM-C-,				
	П-госотични и колог		T-0P				
D1	$\mu_{0} \rightarrow -2 OU \rightarrow U \rightarrow 0$	сул электронами плазмы,	1 2.10-8				
	$H_2O + e = > OH + H + e$	-	1.2.10-8				
R2 R2	$U_2 + e => U + U + e$	-	1.8.10*				
K3	$H_2 + e => H + H + e$	-	8.2.10				
- D (Химичес	ские реакции в объеме	6 1 10 32				
K4	$OH + H + He \ll H_2O + He$	4.3.10 ^{-2.3} <i>T</i> ^{-2.0}	6.1.10-32				
RS	$OH + OH \iff O + H_2O$	5.56-10-2072.0e-1.920/M	1.4.10-14				
R6	$OH + OH \iff H + HO_2$	8.2·10-40	8.2.10-40				
R 7	$H + HO_2 \iff H_2 + O_2$	1.75·10 ⁻¹⁰ e ^{-2.045/RT}	1.6.10-11				
R8	$OH + O \iff H + O_2$	2.0.10 ⁻¹⁰ . <i>T</i> ^{-0.352} e ^{0.244/RT}	3.1.10-11				
R9	$OH + H \iff O + H_2$	8.0.10 ⁻²¹ . T ^{2.8} e ^{-3.875/RT}	2.0.10-15				
R10	$OH + HO_2 \iff H_2O + O_2$	4.8.10 ⁻¹¹ e ^{0.496/RT}	8.6·10 ⁻¹¹				
R11	$OH + H_2 \iff H_2O + H$	3.6.10 ⁻¹⁶ .T ^{1.52} e ^{-3.455/RT}	6.3·10 ⁻¹⁴				
R12	$HO_2 + O \iff OH + O_2$	2.7.10 ⁻¹¹ .e ^{0.445/RT}	4.5·10 ⁻¹¹				
R13	$H + H_2O_2 \iff HO_2 + H_2$	2.8-10 ⁻¹² -e ^{-3.75/RT}	3.5.10-14				
R14	$H + H_2O_2 \iff OH + H_2O$	1.7.10 ⁻¹¹ .e ^{-3.57/RT}	2.6·10 ⁻¹³				
R15	$H + HO_2 \iff O + H_2O$	5.0-10-11-e-1.72/RT	6.7·10 ⁻¹²				
R16	$H + H + M \iff H_2 + M$	1.76·10 ⁻³⁰ · <i>T</i> ⁻¹	4.1·10 ⁻³³				
R17	$OH + O + M \iff HO_2 + M$	4.0.10-32	4.0·10 ⁻³²				
R18	$OH + OH + M \iff H_2O_2 + M$	8.0·10 ⁻³¹ ·T ^{-0.76}	8.0·10 ⁻³³				
R19	$O + H_2O_2 \iff HO_2 + OH$	4.65.10 ⁻¹¹ .e ^{-6.4/RT}	2.6.10-14				
R20	$O + H + M \iff OH + M$	1.3.10 ⁻²⁹ .T ⁻¹	3.0.10-32				
R21	$H + O_2 + M \iff HO_2 + M$	5.5.10 ⁻³⁰ .T ^{-0.8}	4.3·10 ⁻³²				
D 22		2.72.10 ⁻⁶ .e ^{-29.57/RT}	1.0.10-12				
K 22	$OH + H_2O_2 \le H_2O + HO_2$	+3.2.10 ⁻¹² .e ^{-0.427/RT}	1.9.10				
R23	$O + O + M \iff O_2 + M$	2.76·10 ⁻³¹ ·T ⁻¹	6.4·10 ⁻³⁴				
Химические реакции на стенке							
R24	$H + H_{W} \Longrightarrow H_2$		5.0 10 ¹				
R25	$O + Q_{W} \Rightarrow O_2$		1.0 103				
R26	$OH + OH_W => H_2O + O$		1.2 10 ²				
R27	$H + OH_w => H_2O$		1.0				

Смесь (He+Xe+Ar)+ D_2 + H_2O

0,0

1,0

Концентрация атомов кислорода О

- 1 измерения по линии 777 нм
- 2-измерения по линии 844 нм

3,0

 $n_{H20}^0 \cdot 10^{15}$, cm⁻³

3,5

5,0

$$n_{H} = n_{D} \cdot \frac{I_{H}}{I_{D}} \cdot \frac{C_{D}}{C_{H}} \cdot \frac{\lambda_{H}}{\lambda_{D}} \cdot \frac{k_{D}}{k_{H}} \cdot \frac{A_{D}}{A_{H}} \cdot \frac{Q_{H} + A_{H}}{Q_{D} + A_{D}}$$

$$\gamma \cdot n_{H2O}^{0} = n_{H} \qquad n_{H2O}^{0} = \alpha \frac{n_{H}}{n_{D}} \qquad \alpha = \frac{n_{D}}{\gamma}$$
$$\Gamma^{0} = \Delta(n_{H2O}^{0}) / \Delta t = \alpha \cdot \Delta \left(\frac{n_{H}}{n_{D}}\right) / \Delta t$$

- -

Γ, Γ^0 – потоки воды	измер	оения	экстраполяция			
р _{D2} , мбар	5.10-2	2.5.10-2	10-2	10-3	10-4	
α , cm ⁻³	$1.4 \cdot 10^{15}$	$7 \cdot 10^{14}$	$3 \cdot 10^{14}$	$3 \cdot 10^{13}$	$3 \cdot 10^{12}$	
<i>Г</i> ⁰ (1 с), Па∙м ³ ·с ⁻¹	3.10-6	1.4.10-6	6·10 ⁻⁷	6·10 ⁻⁸	6·10 ⁻⁹	
Γ (1 с), Па·м ³ ·с ⁻¹	8·10 ⁻⁸	5.10-8	2.10-8	2·10 ⁻⁹	2·10 ⁻¹⁰	
<i>Г</i> ⁰ (10 с), Па·м ³ ·с ⁻¹	3.10-7	1.4.10-7	6.10-8	6·10 ⁻⁹	6·10 ⁻¹⁰	
<i>Г</i> (10 с), Па·м ³ ·с ⁻¹	8·10 ⁻⁹	5·10 ⁻⁹	2.10-9	$2 \cdot 10^{-10}$	2·10 ⁻¹¹	

A.V. Bernatskiy, V.N. Ochkin. Detection of water molecules in inert gas based plasma by the ratios of atomic spectral lines // Plasma Sources Science and Technology. 2017, V. 26, No. 1, 015002 (5pp). DOI: 10.1088/0963-0252/26/1/015002

Выводы:

- Предложена и реализована модель измерений абсолютных концентраций молекул воды по свечению гидроксила в отсутствии равновесия.
- Реализован метод оптической актинометрии (ОА) для исключения зондовых измерений.
- Произведена оценка поправок связанных с необходимостью знания вида ФРЭЭ в методе ОА.
- Впервые предложено и реализовано одновременное использование нескольких актинометров для определения компонентного состава плазмы (мультиспектральная актинометрия).
- Предложена методика учета тушения излучающих состояний в методе ОА.
- Разработана модель плазмохимических реакций. Достигнуто согласование результатов измерений с моделью.
- Установлено, что наличие в объёме локального плазменного источника существенно меняет динамику поведения плотности паров воды, что связывается именно с появлением новых активных частиц в неравновесных процессах быстрого, по сравнению с адсорбцией, плазмохимического разложения исходных молекул.
- Измерения концентрации молекул воды предложенной методикой, основанной на ОА, согласуются с результатами параллельных измерений методом диодной лазерной спектроскопии.
- Впервые достигнута чувствительность измерений скорости натекания частиц отвечающая требованиям разработчиков ИТЭР (Γ < 10⁻⁷ Па·м³·с⁻¹).

- 1. А.Б. Антипенков, О.Н. Афонин, А.В. Бернацкий, В.Н. Очкин. Измерение концентрации молекул воды по абсолютной интенсивности спектра гидроксила в тлеющем разряде с полым катодом // Ядерная физика и инжиниринг. 2014, т. 5, № 7-8, с. 644-648. DOI: 10.1134/S2079562914070021
- 2. А.В. Бернацкий, В.Н. Очкин, О.Н. Афонин, А.Б. Антипенков. Измерение концентраций молекул воды в плазме с помощью комбинации спектральных и зондовых методов // Физика плазмы. 2015, т. 41, № 9, с. 767-777. DOI: 10.7868/S0367292115090036
- 3. А.В. Бернацкий, В.Н. Очкин. Детектирование примесей воды в плазме методом оптической актинометрии // Краткие сообщения по физике ФИАН. 2015, т. 42, № 9, с. 30-35. DOI: 10.3103/S1068335615090055
- 4. A.V. Bernatskiy, V.N. Ochkin, R.N. Bafoev. The role of the heating of the vacuum chamber on the water content in plasma and gas // Journal of Physics: Conference Series. 2016, V. 747, 012013. DOI: 10.1088/1742-6596/747/1/012013
- 5. А.В. Бернацкий, В.Н. Очкин, Р.Н. Бафоев, А.Б. Антипенков. Динамика плотности молекул воды в разрядной камере, заполненной влажным газом при низком давлении // Физика плазмы. 2016, т. 42, № 10, с. 949-954. DOI: 10.7868/S0367292116100012
- 6. А.В. Бернацкий, В.Н. Очкин, Р.Н. Бафоев. Влияние распределения электронов по энергиям на измерение концентраций атомов методом оптической актинометрии // Краткие сообщения по физике ФИАН. 2016, т. 43, № 6, с. 18-23. DOI: 10.3103/S1068335616060038
- A.V. Bernatskiy, V.N. Ochkin, I.V. Kochetov. Multispectral actinometry of water and water derivate molecules in moist inert gas discharge plasmas // Journal of Physics D: Applied Physics. 2016, V. 49, No. 39, 395204 (10pp). DOI: 10.1088/0022-3727/49/39/395204
- A.V. Bernatskiy, V.V. Lagunov, V.N. Ochkin, S.N. Tskhai. Study of water molecule decomposition in plasma by diode laser spectroscopy and optical actinometry methods // Laser Physics Letters. 2016, V. 13, No. 7, 075702 (4pp). DOI: 10.1088/1612-2011/13/7/075702
- 9. В.Н. Очкин, А.В. Бернацкий. Новые методы определения концентраций молекул воды и её фрагментов в плазме по эмиссионным электронным спектрам // М.: РИИС ФИАН, 2016. 78 с. ISBN: 978-5-902622-32-1
- 10.A.V. Bernatskiy, V.N. Ochkin. Detection of water molecules in inert gas based plasma by the ratios of atomic spectral lines // Plasma Sources Science and Technology. 2017, V. 26, No. 1, 015002 (5pp). DOI: 10.1088/0963-0252/26/1/015002

Спасибо за внимание

Изменения во времени концентраций молекул воды при холодных (295К) и нагретых (395К) стенках камеры без разряда. Начальная концентрация молекул воды n_0 =3.5·10¹⁵ см⁻³

Настоящая работа					Расчеты работ других авторов				
T_{w}, \mathbf{K}	$N \cdot 10^{19}$	<i>Р_N</i> , Па	$N_{A} \cdot 10^{19}$	θ	T_w, \mathbf{K}	$N \cdot 10^{19}$	<i>Р_N</i> , Па	$N_{A} \cdot 10^{19}$	θ
295	4.8	7	2.9	3.9	295	-	7	-	4
395	7	12.1	0.7	0.9	395	-	12	-	0.7

 T_w – температура стенок; N – концентрация молекул воды в состоянии термодинамического равновесия с адсорбированными молекулами; P_N – парциальное давление; N_A – концентрация адсорбированных молекул; θ – степень покрытия (количество монослоёв на поверхности)

	T_w, \mathbf{K}	$ au_d$, C	$(\langle v_e \cdot \sigma_{e,diss} \rangle)^{-1}, c$	N_s/N_0
	295	$\tau_d = \tau_{A0} = 1000 \pm 100$		$0.72{\pm}0.02$
Без разряда	395	$\tau_d = \tau_{A0} = 2500 \pm 100$		0.92±0.01
С разрядом	295	$\tau_d = \tau_{diss} \le 15 \pm 10$	τ_{diss} =5±0.3	0.1±0.02
	395	$\tau_d = \tau_{diss} \le 15 \pm 10$		0.2±0.02

 τ_d – время убыли молекул в начальной фазе; τ_{A0} – время адсорбции; τ_{diss} – время диссоциации; N_s – концентрация молекул в фазе насыщения и термодинамического равновесия; N_0 – начальная концентрация молекул воды

Схема установки.

Результаты измерений концентрации молекул воды N при разных токах разряда. I - метод ДЛС; 2 - метод ОА. $N^{0}_{H2O} = 8 \cdot 10^{15} \text{ см}^{-3}$