# Interaction of low energy deuterium plasma with reduced-activation ODS steels irradiated with 20 MeV W ions

#### O. V. Ogorodnikova<sup>1</sup>, Z. Zhou<sup>2</sup>, K. Sugyama<sup>3</sup>, Yu. Gasparyan<sup>1</sup>, V. Efimov<sup>1</sup>, M. Balden<sup>3</sup>

<sup>1</sup>National Research Nuclear University MEPhI, Moscow, Russia <sup>2</sup> University of Science and Technology Beijing, Beijing 100083, China <sup>3</sup>Max-Planck Institute fuer Plasmaphysik, Garching, Germany

#### Samples: Eurofer 9Cr



Cr precipitates on grain boundaries

**Eurofer**: The precipitates are  $M_{23}C_6$  which can contain tantalum, tungsten, chromium, vanadium etc. The density of precipitates on grain boundaries increases after annealing of Eurofer up to 1000 K.

#### ODS strengthened by dispersed oxides of Y, Ti or Al





<u>ODS:</u> The structure is very inhomogeneous with Ti –Cr precipitates, probably, in the form of oxides, some of them contain Y (small ones), some W (big ones) and there is also SiO dispersoids (biggest ones)  $Y_2Ti_2O_7$  (EDS, TEM): several nm,  $Y_2TiO_5$ 

#### Material compositions

| Sample        | Compositions                                                    |
|---------------|-----------------------------------------------------------------|
| ODS-9Cr       | Fe-9Cr-1.5W-0.1C-0.15Si-0.5Ti-0.35Y <sub>2</sub> O <sub>3</sub> |
| ODS-12Cr      | Fe-12Cr-2W-0.15Si-0.5Ti-0.35Y <sub>2</sub> O <sub>3</sub>       |
| ODS-14Cr (Ti) | Fe-14Cr-2W-0.15Si-0.5Ti-0.35Y <sub>2</sub> O <sub>3</sub>       |
| ODS-14Cr (AI) | Fe-14Cr-2W-0.15Si-4.0AI-0.35Y <sub>2</sub> O <sub>3</sub>       |
| ODS-16Cr      | Fe-16Cr-2W-0.15Si-0.5Ti-0.35Y <sub>2</sub> O <sub>3</sub>       |
| Eurofer       | Fe-9Cr-1W-0.1C-0.2V-0.14Ta-0.03N                                |

**Fe-(9-12)Cr** has ferritic/martensitic structure

**Fe-(14-16)Cr has ferritic structure** 

#### Pre-irradiation with 20 MeV W ions



## Pre-irradiation with 20 MeV W ions



## Pre-irradiation with 20 MeV W ions



#### **Plasma exposure:** undamaged and damaged samples



**Cross section by FIB** 



- Ion flux:~10<sup>20</sup> D/m<sup>2</sup>s
- Ion energies: 20-200 eV D+
- Temperatures: 290 K 700 K
- Fluence up to 3x10<sup>25</sup> D/m<sup>2</sup>



- Ion flux:~10<sup>20</sup> D/m<sup>2</sup>s
- Ion energies: 20-200 eV D+
- Temperatures: 290 K 700 K
- Fluence up to 3x10<sup>25</sup> D/m<sup>2</sup>

# **Post-morten analysis**

1) HSEM: surface modification



- Ion flux:~10<sup>20</sup> D/m<sup>2</sup>s
- Ion energies: 20-200 eV D+
- Temperatures: 290 K 700 K
- Fluence up to 3x10<sup>25</sup> D/m<sup>2</sup>

# **Post-morten analysis**

HSEM: surface modification
 NRA: Depth profile of D up to 6 μm



- Ion flux:~10<sup>20</sup> D/m<sup>2</sup>s
- Ion energies: 20-200 eV D<sup>+</sup>
- Temperatures: 290 K 700 K
- Fluence up to 3x10<sup>25</sup> D/m<sup>2</sup>

# **Post-morten analysis**

HSEM: surface modification
 NRA: Depth profile of D up to 6 μm
 TDS: Total D retention and kinetics

#### Surface morphology: Eurofer vs ODS, 200 eV



Nano-roughness modification (fuzz-like) due to preferential sputtering of light elements: cylindrical cones enriched in W or Ta (EDS and RBS).

No visible difference in surface modification for different RAMF steels and for pre-damaged samples was observed.

#### Surface morphology: temperature effect, 200 eV



Increase of nano-roughness (growth of 'fuzz') with increasing of the temperature

Increase of sputtering yield with increasing of the temperature (weaker bonds, migration of Fe and precipitates at 700 K).

#### Surface morphology: Eurofer, 200 eV



**Sputtering yield = f(Ei, Tem)** 

#### Surface morphology: ODS, 200 eV



**Sputtering yield = f(Ei, Tem)** 

#### Surface morphology: energy effect



Even subthreshold D energy of 20 eV can cause sputtering and 'fuzz' growth at elevated temperatures

#### **Comparison with Be in PISCES**



Similar surface morphology was observed for Be in PISCES

#### Annealing of 'fuzz'



#### Stable at keeping at RT

#### Annealing of 'fuzz'



#### After annealing by TDS up to 1000 K, 'fuzz' disappear





A reduction of the D retention in ODS with formation of 'fuzz'



\* A reduction of the D retention in ODS with formation
of 'fuzz' Ret\_total = Ret\_surf + Ret\_bulk



#### The D retention in undamaged Eurofer & ODS



The D retention in ODS is higher compared to Eurofer

#### **D** retention

NRA: D depth profile measurement up to 6 mkm

**TDS: total retention** 

Ret\_TDS = Ret\_surf + Ret\_bulk

## Radiation damage produced by 20 MeV W ions







Radiation damage up to ~ 1 dpa, RT

 $x(t)=sqrt(2*D*t*K_s*sqrt(\zeta I_0/2s\mu))/(density of filled traps))$ 



#### filled traps empty traps

Radiation damage up to ~ 1 dpa, RT

 $x(t)=sqrt(2*D*t*K_s*sqrt(\zeta I_0/2s\mu))/(density of filled traps))$ 



Radiation damage up to ~ 1 dpa, RT

 $x(t)=sqrt(2*D*t*K_s*sqrt(\zeta I_0/2s\mu))/(density of filled traps))$ 



Radiation damage up to ~ 1 dpa, RT

 $x(t)=sqrt(2*D*t*K_s*sqrt(\zeta I_0/2s\mu))/(density of filled traps))$ 



## Sputtering changes the front propagation of D

Radiation damage up to ~ 1 dpa, RT



#### filled traps empty traps

#### Sputtering changes the front propagation of D



#### Sputtering changes the front propagation of D

Radiation damage up to ~ 1 dpa, RT



#### *Ret\_TDS = Ret\_surf + Ret\_bulk*

#### The D retention in damaged Eurofer & ODS



The D concentration at radiation-induced damage in ODS and Eurofer is similar



Radiation-induced defects up to 3 mkm result in an increase of the total D retention. The D retention near the plasma-facing surface contributes in the total retention



Formation of 'fuzz' decreases the D retention in pre-damaged W because the surface retention contributes in the total retention



Formation of 'fuzz' decreases the D retention in pre-damaged W because the surface retention contributes in the total retention

Total D retention = **Ret\_surf** + Ret\_bulk

#### The D retention in damaged Eurofer & ODS



The D concentration at radiation-induced damage is saturated at ~0.25 dpa

#### The D retention in damaged Eurofer & ODS



The D concentration at radiation-induced damage is saturated at ~0.25 dpa

#### The D retention in damaged steel vs W



The D concentration at radiation-induced damage is saturated at ~0.25 dpa for steel and at ~0.5 dpa for W

#### The D retention in damaged steel vs W



The D concentration at radiation-induced damage is saturated at ~0.25 dpa for steel and at ~0.5 dpa for W

#### Effect of Cr concentration in ODS



#### Replacement of Ti on Al in ODS-14Cr



#### Replacement of Ti on Al in ODS-14Cr



Replacement of Ti on Al decreases the D retention because of a reduction of the diffusion into the bulk

## Conclusions (undamaged steel)

- The formation of 'fuzz'-like structure enriched in W or Ta was observed at incident D energy of 200 eV for both Eurofer and ODS steels
- The 'fuzz' growth enhances with increasing of the temperature
- Sputtering yield = f (ion energy, temperature)
- The formation of 'fuzz' decreases the D retention near the surface and can reduce the total D retention

## Conclusions (undamaged steel)

- The D retention in ODS is higher than in Eurofer
- The D inventory depends on Cr concentration: ODS-12Cr has minimum in the D retention
- Using AI instead of Ti in ODS reduces the D retention

## Conclusions (damaged steel)

- Pre-irradiation with W ions results in the same D concentration in both ODS and Eurofer
- The D concentration does not depend on the Cr concentration in pre-damaged steel
- The D concentration at radiation-induced defects saturates at 0.25 dpa
- No effect of pre-damaging at RT on the D retention after the D plasma exposure at T > 500 K

#### Conclusions

Sare steel cannot be used as plasma-facing material due to strong sputtering by D ions => protection with W coating:

#### Conclusions

Sare steel cannot be used as plasma-facing material due to strong sputtering by D ions => protection with W coating:



 D retention in interface between W coating and steel can be a concern

#### Conclusions

Sare steel cannot be used as plasma-facing material due to strong sputtering by D ions => protection with W coating:



 D retention in interface between W coating and steel can be a concern

 D retention is higher in W/Eurofer compared to Eurofer

## Future plan

 Fusion relevant behavior at 500-700 appm He needs to be addressed: double beam experiment at MEPhI (D+He) is planning at 2016

# Materials composition

| Sample       | ple Compositions                       |                    |  |  |  |  |
|--------------|----------------------------------------|--------------------|--|--|--|--|
| 9Cr-ODS (2)  | Fe-9Cr-1.5W-0.1C-0.15Si-0.5Ti-0.35Y2O3 | (MA+HIF<br>HIP·100 |  |  |  |  |
| 12Cr-ODS     | Fe-12Cr-2W-0.15Si-0.5Ti-0.35Y2O3       | Forge:             |  |  |  |  |
| 14Cr-ODS(Ti) | Fe-14Cr-2W-0.15Si-0.5Ti-0.35Y2O3       | 1150-117           |  |  |  |  |
| 14Cr-ODS(AI) | Fe-14Cr-2W-0.15Si-4.0AI-0.35Y2O3       | ratio 3:1          |  |  |  |  |
| 16Cr-ODS     | Fe-16Cr-2W-0.15Si-0.5Ti-0.35Y2O3       | Y2Ti2O7            |  |  |  |  |

Processing parameters (MA+HIP+Forging): HIP:100MPa; 1150 °C, 3h; Forge: initial temperature 1150-1170 °C, final temperature 970 °C, forging ratio 3:1; Y2Ti2O7 (EDS, TEM): several nm, Y2TiO5 Large dispersoid: Ti0, TiN Weight percent

|         | C    | Mn   | Si  | P     | S     | Cr  | Ni    | W    | N    | Cu     | B     | Co    | Nb   | Ta   | Ti   | V    | Mo     | Zr   | Ce   |
|---------|------|------|-----|-------|-------|-----|-------|------|------|--------|-------|-------|------|------|------|------|--------|------|------|
| Eurofer | 0.12 | 0.49 | 0.5 | 0.005 | 0.003 | 8.9 | 0.005 | 1.15 | 0.03 | 0.0037 | 0.001 | 0.005 | 0.2  | 0.14 | 0.01 | 0,2  | 0,0012 |      |      |
| Rusfer  | 0,16 | 0,6  | 0,4 | 0,01  | 0,006 | 12  | 0,03  | 2    | 0,04 |        | 0,006 |       | 0,01 | 0,15 | 0,05 | 0,25 | 0,01   | 0,05 | 0,05 |

NRA: D depth profile measurement



NRA: D depth profile measurement





Total D retention = Ret\_surf + Ret\_bulk

#### Desorption of weakly bounded D with time



#### **D** retention as a function of tem Ti-Cr







#### Surface morphology: energy effect



many pinholes are observed at elevated temperatures